Web Bot Detection Evasion Using Generative Adversarial Networks

Christos Iliou, Theodoros Kostoulas, T. Tsikrika, Vasilis Katos, S. Vrochidis, Y. Kompatsiaris
{"title":"Web Bot Detection Evasion Using Generative Adversarial Networks","authors":"Christos Iliou, Theodoros Kostoulas, T. Tsikrika, Vasilis Katos, S. Vrochidis, Y. Kompatsiaris","doi":"10.1109/CSR51186.2021.9527915","DOIUrl":null,"url":null,"abstract":"Web bots are programs that can be used to browse the web and perform automated actions. These actions can be benign, such as web indexing and website monitoring, or malicious, such as unauthorised content scraping and scalping. To detect bots, web servers consider bots’ fingerprint and behaviour, with research showing that techniques that examine the visitor’s mouse movements can be very effective. In this work, we showcase that web bots can leverage the latest advances in machine learning to evade detection based on their mouse movements and touchscreen trajectories (for the case of mobile web bots). More specifically, the proposed web bots utilise Generative Adversarial Networks (GANs) to generate images of trajectories similar to those of humans, which can then be used by bots to evade detection. We show that, even if the web server is aware of the attack method, web bots can generate behaviours that can evade detection.","PeriodicalId":253300,"journal":{"name":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR51186.2021.9527915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Web bots are programs that can be used to browse the web and perform automated actions. These actions can be benign, such as web indexing and website monitoring, or malicious, such as unauthorised content scraping and scalping. To detect bots, web servers consider bots’ fingerprint and behaviour, with research showing that techniques that examine the visitor’s mouse movements can be very effective. In this work, we showcase that web bots can leverage the latest advances in machine learning to evade detection based on their mouse movements and touchscreen trajectories (for the case of mobile web bots). More specifically, the proposed web bots utilise Generative Adversarial Networks (GANs) to generate images of trajectories similar to those of humans, which can then be used by bots to evade detection. We show that, even if the web server is aware of the attack method, web bots can generate behaviours that can evade detection.
基于生成对抗网络的网络机器人检测规避
网络机器人是可以用来浏览网页和执行自动操作的程序。这些行为可能是良性的,如网络索引和网站监控,也可能是恶意的,如未经授权的内容抓取和剥头皮。为了检测机器人,网络服务器会考虑机器人的指纹和行为,研究表明,检测访问者鼠标移动的技术可能非常有效。在这项工作中,我们展示了网络机器人可以利用机器学习的最新进展来逃避基于鼠标运动和触摸屏轨迹的检测(对于移动网络机器人的情况)。更具体地说,提议的网络机器人利用生成对抗网络(GANs)来生成与人类相似的轨迹图像,然后机器人可以使用这些图像来逃避检测。我们表明,即使web服务器意识到攻击方法,web机器人也可以生成可以逃避检测的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信