Neural network based chattering free sliding mode control

Hiroshi Morioka, Kenzo Wada, A. Sabanoviç, Karel Jezernik
{"title":"Neural network based chattering free sliding mode control","authors":"Hiroshi Morioka, Kenzo Wada, A. Sabanoviç, Karel Jezernik","doi":"10.1109/SICE.1995.526699","DOIUrl":null,"url":null,"abstract":"We present a design method of online estimator which estimates a part of equivalent control containing a system's nonlinear term, input-matrix uncertainty and unknown disturbance by use of one of a neural network's most powerful ability, that is, function approximation, The controller using that estimated equivalent control is designed to have continuous control to eliminate chattering and to provide sliding mode motion on the selected manifolds in the state space.","PeriodicalId":344374,"journal":{"name":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.1995.526699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

We present a design method of online estimator which estimates a part of equivalent control containing a system's nonlinear term, input-matrix uncertainty and unknown disturbance by use of one of a neural network's most powerful ability, that is, function approximation, The controller using that estimated equivalent control is designed to have continuous control to eliminate chattering and to provide sliding mode motion on the selected manifolds in the state space.
基于神经网络的抖振自由滑模控制
本文提出了一种在线估计器的设计方法,该方法利用神经网络最强大的功能之一——函数逼近,估计出包含系统非线性项、输入矩阵不确定性和未知干扰的等效控制的一部分,利用该估计等效控制的控制器被设计成具有连续控制以消除抖振,并在状态空间中选定流形上提供滑模运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信