ExaPPC: a Large-Scale Persian Paraphrase Detection Corpus

Reyhaneh Sadeghi, Hamed Karbasi, Ahmad Akbari
{"title":"ExaPPC: a Large-Scale Persian Paraphrase Detection Corpus","authors":"Reyhaneh Sadeghi, Hamed Karbasi, Ahmad Akbari","doi":"10.1109/ICWR54782.2022.9786243","DOIUrl":null,"url":null,"abstract":"This paper describes the creation of Exa Persian Paraphrase Corpus (ExaPPC), a large paraphrase corpus consisting of monolingual sentence-level paraphrases using different sources. ExaPPC is the first large-scale paraphrase dataset used in Persian paraphrase detection to the best of our knowledge. There are 2.3M labeled sentence pairs in the corpus consisting of a 1M paraphrase label and 1.3M non-paraphrase label. Efforts were made manually and semi-automatically to construct this corpus using techniques such as subtitle alignment, translating existing parallel English-Persian corpus and similarity corpus on English tweets. In addition to enriching the corpus, candidate sentence pairs among tweets have been extracted via NLP tools and labeled by two Persian native speakers. The advantages of this corpus compared to the existing ones are the number of pair sentences, sentence Length variation and textual diversity, including formal and dialogue sentences. The result on the provided test corpus shows that ExaPPC achieves 94% accuracy on paraphrase detection task. The corpus is publicly available11https://github.com/exaco/exappc","PeriodicalId":355187,"journal":{"name":"2022 8th International Conference on Web Research (ICWR)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Web Research (ICWR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWR54782.2022.9786243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes the creation of Exa Persian Paraphrase Corpus (ExaPPC), a large paraphrase corpus consisting of monolingual sentence-level paraphrases using different sources. ExaPPC is the first large-scale paraphrase dataset used in Persian paraphrase detection to the best of our knowledge. There are 2.3M labeled sentence pairs in the corpus consisting of a 1M paraphrase label and 1.3M non-paraphrase label. Efforts were made manually and semi-automatically to construct this corpus using techniques such as subtitle alignment, translating existing parallel English-Persian corpus and similarity corpus on English tweets. In addition to enriching the corpus, candidate sentence pairs among tweets have been extracted via NLP tools and labeled by two Persian native speakers. The advantages of this corpus compared to the existing ones are the number of pair sentences, sentence Length variation and textual diversity, including formal and dialogue sentences. The result on the provided test corpus shows that ExaPPC achieves 94% accuracy on paraphrase detection task. The corpus is publicly available11https://github.com/exaco/exappc
大型波斯语释义检测语料库
本文描述了Exa波斯语释义语料库(ExaPPC)的创建,这是一个由使用不同来源的单语句子级释义组成的大型释义语料库。据我们所知,ExaPPC是第一个用于波斯语释义检测的大规模释义数据集。语料库中有2.3万个标注句对,其中包括1万个释义标签和1.3万个非释义标签。使用字幕对齐、翻译现有的平行英语-波斯语语料库和英语推文的相似语料库等技术,人工和半自动地构建了该语料库。除了丰富语料库之外,通过NLP工具提取了推文中的候选句子对,并由两位波斯语母语者进行了标记。与现有语料库相比,该语料库的优势在于对句的数量、句子长度的变化和文本的多样性,包括形式句和对话句。在提供的测试语料库上的结果表明,ExaPPC在释义检测任务上达到了94%的准确率。语料库是公开可用的11https://github.com/exaco/exappc
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信