Investigation of different acoustic modeling techniques for low resource Indian language data

R. Sriranjani, B. MuraliKarthick, S. Umesh
{"title":"Investigation of different acoustic modeling techniques for low resource Indian language data","authors":"R. Sriranjani, B. MuraliKarthick, S. Umesh","doi":"10.1109/NCC.2015.7084860","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the performance of deep neural network (DNN) and Subspace Gaussian mixture model (SGMM) in low-resource condition. Even though DNN outperforms SGMM and continuous density hidden Markov models (CDHMM) for high-resource data, it degrades in performance while modeling low-resource data. Our experimental results show that SGMM outperforms DNN for limited transcribed data. To resolve this problem in DNN, we propose to train DNN containing bottleneck layer in two stages: First stage involves extraction of bottleneck features. In second stage, the extracted bottleneck features from first stage are used to train DNN having bottleneck layer. All our experiments are performed using two Indian languages (Tamil & Hindi) in Mandi database. Our proposed method shows improved performance when compared to baseline SGMM and DNN models for limited training data.","PeriodicalId":302718,"journal":{"name":"2015 Twenty First National Conference on Communications (NCC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Twenty First National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2015.7084860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we investigate the performance of deep neural network (DNN) and Subspace Gaussian mixture model (SGMM) in low-resource condition. Even though DNN outperforms SGMM and continuous density hidden Markov models (CDHMM) for high-resource data, it degrades in performance while modeling low-resource data. Our experimental results show that SGMM outperforms DNN for limited transcribed data. To resolve this problem in DNN, we propose to train DNN containing bottleneck layer in two stages: First stage involves extraction of bottleneck features. In second stage, the extracted bottleneck features from first stage are used to train DNN having bottleneck layer. All our experiments are performed using two Indian languages (Tamil & Hindi) in Mandi database. Our proposed method shows improved performance when compared to baseline SGMM and DNN models for limited training data.
低资源印度语数据的不同声学建模技术研究
本文研究了深度神经网络(DNN)和子空间高斯混合模型(SGMM)在低资源条件下的性能。尽管DNN在高资源数据上优于SGMM和连续密度隐马尔可夫模型(CDHMM),但在建模低资源数据时,它的性能会下降。我们的实验结果表明,SGMM在有限的转录数据上优于DNN。为了在深度神经网络中解决这一问题,我们建议分两个阶段训练包含瓶颈层的深度神经网络:第一阶段涉及瓶颈特征的提取。第二阶段,利用第一阶段提取的瓶颈特征训练具有瓶颈层的深度神经网络。我们所有的实验都是在曼迪数据库中使用两种印度语言(泰米尔语和印地语)进行的。在有限的训练数据下,与基线SGMM和DNN模型相比,我们提出的方法表现出更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信