Dongho Lee, Valentin Perrelle, B. Valiron, Zhaowei Xu
{"title":"Concrete Categorical Model of a Quantum Circuit Description Language with Measurement","authors":"Dongho Lee, Valentin Perrelle, B. Valiron, Zhaowei Xu","doi":"10.4230/LIPIcs.FSTTCS.2021.51","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce dynamic lifting to a quantum circuit-description language, following the Proto-Quipper language approach. Dynamic lifting allows programs to transfer the result of measuring quantum data -- qubits -- into classical data -- booleans -- . We propose a type system and an operational semantics for the language and we state safety properties. Next, we introduce a concrete categorical semantics for the proposed language, basing our approach on a recent model from Rios\\&Selinger for Proto-Quipper-M. Our approach is to construct on top of a concrete category of circuits with measurements a Kleisli category, capturing as a side effect the action of retrieving classical content out of a quantum memory. We then show a soundness result for this semantics.","PeriodicalId":175000,"journal":{"name":"Foundations of Software Technology and Theoretical Computer Science","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Software Technology and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSTTCS.2021.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, we introduce dynamic lifting to a quantum circuit-description language, following the Proto-Quipper language approach. Dynamic lifting allows programs to transfer the result of measuring quantum data -- qubits -- into classical data -- booleans -- . We propose a type system and an operational semantics for the language and we state safety properties. Next, we introduce a concrete categorical semantics for the proposed language, basing our approach on a recent model from Rios\&Selinger for Proto-Quipper-M. Our approach is to construct on top of a concrete category of circuits with measurements a Kleisli category, capturing as a side effect the action of retrieving classical content out of a quantum memory. We then show a soundness result for this semantics.