Improving polynomial datapath debugging with HEDs

Somayeh Sadeghi Kohan, Payman Behnam, B. Alizadeh, M. Fujita, Z. Navabi
{"title":"Improving polynomial datapath debugging with HEDs","authors":"Somayeh Sadeghi Kohan, Payman Behnam, B. Alizadeh, M. Fujita, Z. Navabi","doi":"10.1109/ETS.2014.6847797","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a formal and scalable debugging approach to derive a reduced ordered set of design error candidates in polynomial datapath designs. To make our debugging method scalable for large designs, we utilize a Modular Horner Expansion Diagram (M-HED), which has been shown to be a scalable high level decision model. In our method, we extract data dependency graphs from the polynomial datapath designs using static slicing. Then we combine backward and forward path tracing to extract a reduced set of error candidates. In order to increase the accuracy of the method in the presence of multiple design errors, we rank the error candidates in decreasing order of their probability of being an error using a proposed priority criterion. In order to evaluate the effectiveness of our method, we have applied it to several large designs. The experimental results show that the proposed method enables us to locate even multiple errors with high accuracy in a short run time.","PeriodicalId":145416,"journal":{"name":"2014 19th IEEE European Test Symposium (ETS)","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS.2014.6847797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we introduce a formal and scalable debugging approach to derive a reduced ordered set of design error candidates in polynomial datapath designs. To make our debugging method scalable for large designs, we utilize a Modular Horner Expansion Diagram (M-HED), which has been shown to be a scalable high level decision model. In our method, we extract data dependency graphs from the polynomial datapath designs using static slicing. Then we combine backward and forward path tracing to extract a reduced set of error candidates. In order to increase the accuracy of the method in the presence of multiple design errors, we rank the error candidates in decreasing order of their probability of being an error using a proposed priority criterion. In order to evaluate the effectiveness of our method, we have applied it to several large designs. The experimental results show that the proposed method enables us to locate even multiple errors with high accuracy in a short run time.
改进用赫德调试多项式数据路径
在本文中,我们引入了一种形式化和可扩展的调试方法来导出多项式数据路径设计中的设计错误候选项的简化有序集。为了使我们的调试方法可扩展到大型设计,我们使用模块化霍纳扩展图(M-HED),这已被证明是一个可扩展的高层决策模型。在我们的方法中,我们使用静态切片从多项式数据路径设计中提取数据依赖图。然后,我们结合反向和正向路径跟踪来提取一组减少的候选错误。为了提高该方法在存在多个设计错误时的准确性,我们使用提出的优先级标准将候选错误按其成为错误的概率降序排列。为了评估我们的方法的有效性,我们已经将其应用于几个大型设计。实验结果表明,该方法能够在较短的运行时间内以较高的精度定位多个误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信