Slasher: Stadium racer car for event camera end-to-end learning autonomous driving experiments

Yuhuang Hu, Hong Ming Chen, T. Delbrück
{"title":"Slasher: Stadium racer car for event camera end-to-end learning autonomous driving experiments","authors":"Yuhuang Hu, Hong Ming Chen, T. Delbrück","doi":"10.1109/AICAS.2019.8771520","DOIUrl":null,"url":null,"abstract":"Slasher is the first open 1/10 scale autonomous driving platform for exploring the use of neuromorphic event cameras for fast driving in unstructured indoor and outdoor environments. Slasher features a DAVIS event-based camera and ROS computer for perception and control. The DAVIS camera provides high dynamic range, sparse output, and sub-millisecond latency output for the quick visual control needed for fast driving. A race controller and Bluetooth remote joystick are used to coordinate different processing pipelines, and a low-cost ultra-wide-band (UWB) positioning system records trajectories. The modular design of Slasher can easily integrate additional features and sensors. In this paper, we show its application in a reflexive Convolutional Neural Network (CNN) steering controller trained by end-to-end learning. We present preliminary experiments in closed-loop indoor and outdoor trail driving.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Slasher is the first open 1/10 scale autonomous driving platform for exploring the use of neuromorphic event cameras for fast driving in unstructured indoor and outdoor environments. Slasher features a DAVIS event-based camera and ROS computer for perception and control. The DAVIS camera provides high dynamic range, sparse output, and sub-millisecond latency output for the quick visual control needed for fast driving. A race controller and Bluetooth remote joystick are used to coordinate different processing pipelines, and a low-cost ultra-wide-band (UWB) positioning system records trajectories. The modular design of Slasher can easily integrate additional features and sensors. In this paper, we show its application in a reflexive Convolutional Neural Network (CNN) steering controller trained by end-to-end learning. We present preliminary experiments in closed-loop indoor and outdoor trail driving.
Slasher:体育场赛车,用于事件相机端到端学习自动驾驶实验
Slasher是首个开放的1/10级自动驾驶平台,用于探索在非结构化室内和室外环境中使用神经形态事件相机进行快速驾驶。Slasher的特点是一个基于DAVIS事件的相机和ROS计算机用于感知和控制。DAVIS相机提供高动态范围,稀疏输出和亚毫秒延迟输出,用于快速驾驶所需的快速视觉控制。比赛控制器和蓝牙遥控操纵杆用于协调不同的处理管道,低成本的超宽带(UWB)定位系统记录轨迹。Slasher的模块化设计可以轻松集成额外的功能和传感器。在本文中,我们展示了它在端到端学习训练的自反卷积神经网络(CNN)转向控制器中的应用。提出了室内和室外闭环越野驾驶的初步实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信