Green element numerical solution of generalized Couette flow with heat transfer

O. Onyejekwe
{"title":"Green element numerical solution of generalized Couette flow with heat transfer","authors":"O. Onyejekwe","doi":"10.0000/IJAMC.2013.5.2.537","DOIUrl":null,"url":null,"abstract":"This paper provides a Green element  method (GEM) numerical  analysis of the effects of  a uniform transverse magnetic field on fluid flow. The Green element method is a robust numerical scheme that evolved essentially from the singular integral  theory of the boundary element method (BEM) with the unique variety of numerically implementing the theory  by  the finite element procedure. One of the advantages inherent in this approach is that the coefficient matrix from the discrete  equations of the assembled element equations is banded and amenable to numerical  solution. For the purposes of this study,   the fluid is incompressible, and electrically conducting, and  flows between two parallel plates, one of which is moving with a uniform speed  while the other is stationary. The depth of the channel is taken to be much smaller than the width and the channel is considered to be  very long in the horizontal direction. As a result,  the flow is  assumed to be fully developed and  driven by a pressure gradient in a uniform magnetic field. Numerical solutions obtained with GEM closely match analytical results. In order to validate the physics and numerics of the problem formulation,  comprehensive  parametric studies are carried out to show the effects on flow  and electromagnetic fields of Hartmann number, pressure gradient, current distributions, and temperature .","PeriodicalId":173223,"journal":{"name":"International Journal of Applied Mathematics and Computation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.0000/IJAMC.2013.5.2.537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a Green element  method (GEM) numerical  analysis of the effects of  a uniform transverse magnetic field on fluid flow. The Green element method is a robust numerical scheme that evolved essentially from the singular integral  theory of the boundary element method (BEM) with the unique variety of numerically implementing the theory  by  the finite element procedure. One of the advantages inherent in this approach is that the coefficient matrix from the discrete  equations of the assembled element equations is banded and amenable to numerical  solution. For the purposes of this study,   the fluid is incompressible, and electrically conducting, and  flows between two parallel plates, one of which is moving with a uniform speed  while the other is stationary. The depth of the channel is taken to be much smaller than the width and the channel is considered to be  very long in the horizontal direction. As a result,  the flow is  assumed to be fully developed and  driven by a pressure gradient in a uniform magnetic field. Numerical solutions obtained with GEM closely match analytical results. In order to validate the physics and numerics of the problem formulation,  comprehensive  parametric studies are carried out to show the effects on flow  and electromagnetic fields of Hartmann number, pressure gradient, current distributions, and temperature .
带传热的广义Couette流的格林元数值解
本文用格林元法(GEM)数值分析了均匀横向磁场对流体流动的影响。格林元法是由边界元法的奇异积分理论发展而来的一种鲁棒性数值格式,具有通过有限元程序在数值上实现该理论的独特性。这种方法的一个固有优点是,从组合单元方程的离散方程得到的系数矩阵是带状的,便于数值求解。为了本研究的目的,流体是不可压缩的,并且是导电的,并且在两个平行的板之间流动,其中一个以匀速运动而另一个静止。通道的深度被认为比宽度小得多,并且通道被认为在水平方向上很长。因此,假定流动在均匀磁场中由压力梯度驱动并得到充分发展。数值解与解析结果吻合较好。为了验证问题表述的物理和数值,进行了全面的参数研究,以显示哈特曼数、压力梯度、电流分布和温度对流动和电磁场的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信