A plurality of (non)visualizations: Branch points and branch curves at the turn of the 19th century

M. Friedman
{"title":"A plurality of (non)visualizations: Branch points and branch curves at the turn of the 19th century","authors":"M. Friedman","doi":"10.24033/rhm.224","DOIUrl":null,"url":null,"abstract":"— This article deals with the different ways branch points and branch curves were visualized at the turn of the 19th century. On the one hand, for branch points of complex curves one finds an abundance of visualization techniques employed. German mathematicians such as Felix Klein or Walther von Dyck were the main promoters of these numerous forms of visualization, which appeared either as two-dimensional illustrations or three-dimensional material models. This plurality of visualization techniques, however, also resulted in inadequate images that aimed to show the varied ways branch points could possibly be represented. For branch (and ramification) curves of complex surfaces, on the other hand, there were hardly any representations. When the Italian school of algebraic geometry studied branch curves systematically only partial illustrations can be seen, and branch curves were generally made “invisible”. The plurality of visualizations shifted into various forms of non-visualization. This can be seen in the different ways visualization techniques disappeared. Texte reçu le 9 novembre 2017, accepté le 16 juillet 2018, révisé le 15 août 2018. M. Friedman, Humboldt University, Cluster of Excellence Matters of Activity. Image Space Material, Sophienstr. 22a, Berlin 10178, Germany. Courrier électronique : michael.friedman@hu-berlin.de 2000 Mathematics Subject Classification : 01A55, 01A60, 14–03, 14H30, 14J99.","PeriodicalId":183845,"journal":{"name":"Revue d histoire des math&#233 matiques","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue d histoire des math&#233 matiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24033/rhm.224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

— This article deals with the different ways branch points and branch curves were visualized at the turn of the 19th century. On the one hand, for branch points of complex curves one finds an abundance of visualization techniques employed. German mathematicians such as Felix Klein or Walther von Dyck were the main promoters of these numerous forms of visualization, which appeared either as two-dimensional illustrations or three-dimensional material models. This plurality of visualization techniques, however, also resulted in inadequate images that aimed to show the varied ways branch points could possibly be represented. For branch (and ramification) curves of complex surfaces, on the other hand, there were hardly any representations. When the Italian school of algebraic geometry studied branch curves systematically only partial illustrations can be seen, and branch curves were generally made “invisible”. The plurality of visualizations shifted into various forms of non-visualization. This can be seen in the different ways visualization techniques disappeared. Texte reçu le 9 novembre 2017, accepté le 16 juillet 2018, révisé le 15 août 2018. M. Friedman, Humboldt University, Cluster of Excellence Matters of Activity. Image Space Material, Sophienstr. 22a, Berlin 10178, Germany. Courrier électronique : michael.friedman@hu-berlin.de 2000 Mathematics Subject Classification : 01A55, 01A60, 14–03, 14H30, 14J99.
多个(非)可视化:19世纪初的分支点和分支曲线
这篇文章讨论了在19世纪初分支点和分支曲线被可视化的不同方式。一方面,对于复杂曲线的分支点,人们发现使用了大量的可视化技术。费利克斯·克莱因(Felix Klein)或瓦尔特·冯·戴克(Walther von Dyck)等德国数学家是这些可视化形式的主要推动者,它们要么以二维插图的形式出现,要么以三维材料模型的形式出现。然而,这种多种可视化技术也导致了旨在显示分支点可能表示的不同方式的图像不足。另一方面,对于复杂曲面的分支(和分支)曲线,几乎没有任何表示。当意大利代数几何学派系统地研究分支曲线时,只能看到部分插图,分支曲线通常是“不可见的”。视觉化的多元性转变为各种形式的非视觉化。这可以从可视化技术消失的不同方式看出。文本修订于2017年11月9日,接受修订于2018年6月16日,修订于2018年11月15日。M. Friedman,洪堡大学,《活动的卓越事项》。影像空间材料,Sophienstr. 22a,柏林10178,德国。电子信使:michael.friedman@hu-berlin.de 2000数学学科分类:01A55, 01A60, 14-03, 14H30, 14J99。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信