{"title":"Layout-driven high level synthesis for FPGA based architectures","authors":"Min Xu, F. Kurdahi","doi":"10.1109/DATE.1998.655896","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of layout-driven scheduling-binding as these steps have a direct relevance on the final performance of the design. The importance of effective and efficient accounting of layout effects is well-established in High-Level Synthesis (HLS), since it allows more efficient exploration of the design space and the generation of solutions with predictable metrics. This feature is highly desirable in order to avoid unnecessary iterations through the design process. By producing not only an RTL netlist but also an approximate physical topology of implementation at the chip level, we ensure that the solution will perform at the predicted metric once implemented, thus avoiding unnecessary delays in the design process.","PeriodicalId":179207,"journal":{"name":"Proceedings Design, Automation and Test in Europe","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.1998.655896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
In this paper, we address the problem of layout-driven scheduling-binding as these steps have a direct relevance on the final performance of the design. The importance of effective and efficient accounting of layout effects is well-established in High-Level Synthesis (HLS), since it allows more efficient exploration of the design space and the generation of solutions with predictable metrics. This feature is highly desirable in order to avoid unnecessary iterations through the design process. By producing not only an RTL netlist but also an approximate physical topology of implementation at the chip level, we ensure that the solution will perform at the predicted metric once implemented, thus avoiding unnecessary delays in the design process.