Thermal Management of High Power GaN MMIC on Silicon with Microjet Impingement Cooling

Miao Yu, Tongsheng Zuo, Min Huang, Jian Zhu
{"title":"Thermal Management of High Power GaN MMIC on Silicon with Microjet Impingement Cooling","authors":"Miao Yu, Tongsheng Zuo, Min Huang, Jian Zhu","doi":"10.1109/icet55676.2022.9824341","DOIUrl":null,"url":null,"abstract":"A high power GaN monolithic microwave integrated circuit (MMIC) power amplifier (PA) integrated on a silicon interposer with microjet impingement cooling is presented in this work. A Si interposer and a test cube for coolant supply were designed using computational fluid dynamics (CFD) method. The GaN MMIC is a 3-stage PA, and it was integrated on the interposer then assembled in the test cube. The microjets were arranged beneath the $3^{\\mathrm{r}\\mathrm{d}}$ stage transistors of PA to increase the heat transfer efficiency. The fluidic parameters of deionized (DI) water circulation, electrical and thermal characteristics of the chip were monitored in a cooling test platform. The hotspot power density at the junctions achieved 416.5 $\\mathrm{W}/\\mathrm{m}\\mathrm{m}^{2}$ and the average heat flux of the chip was up to $53\\mathrm{S}.9\\mathrm{W}/\\mathrm{c}\\mathrm{m}^{2}$. The maximum junction temperature of GaN PA maintained at 158. $2^{\\circ}\\mathrm{C}$ at $70^{\\circ}\\mathrm{C}$ atmosphere temperature with the pressure drop of $\\sim$270kPa at the flow rate of $\\sim 500\\displaystyle \\mathrm{m}\\mathrm{L}/\\min$. The implementation results have demonstrated that microjet impingement cooling is an effective and practical solution for high power hetero-integration on silicon substrate.","PeriodicalId":166358,"journal":{"name":"2022 IEEE 5th International Conference on Electronics Technology (ICET)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Electronics Technology (ICET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icet55676.2022.9824341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A high power GaN monolithic microwave integrated circuit (MMIC) power amplifier (PA) integrated on a silicon interposer with microjet impingement cooling is presented in this work. A Si interposer and a test cube for coolant supply were designed using computational fluid dynamics (CFD) method. The GaN MMIC is a 3-stage PA, and it was integrated on the interposer then assembled in the test cube. The microjets were arranged beneath the $3^{\mathrm{r}\mathrm{d}}$ stage transistors of PA to increase the heat transfer efficiency. The fluidic parameters of deionized (DI) water circulation, electrical and thermal characteristics of the chip were monitored in a cooling test platform. The hotspot power density at the junctions achieved 416.5 $\mathrm{W}/\mathrm{m}\mathrm{m}^{2}$ and the average heat flux of the chip was up to $53\mathrm{S}.9\mathrm{W}/\mathrm{c}\mathrm{m}^{2}$. The maximum junction temperature of GaN PA maintained at 158. $2^{\circ}\mathrm{C}$ at $70^{\circ}\mathrm{C}$ atmosphere temperature with the pressure drop of $\sim$270kPa at the flow rate of $\sim 500\displaystyle \mathrm{m}\mathrm{L}/\min$. The implementation results have demonstrated that microjet impingement cooling is an effective and practical solution for high power hetero-integration on silicon substrate.
基于微射流冲击冷却的硅基高功率GaN MMIC热管理
提出了一种集成在硅中间层上的高功率GaN单片微波集成电路(MMIC)功率放大器。采用计算流体力学(CFD)方法设计了硅中间体和冷却剂供应试验立方体。GaN MMIC是一个3级PA,它被集成在中间器上,然后组装在测试立方体中。微射流布置在PA的$3^{\mathrm{r}\mathrm{d}}$级晶体管下方,以提高传热效率。在冷却测试平台上对芯片的去离子水循环流态参数、电特性和热特性进行了监测。节点处的热点功率密度达到416.5 $\mathrm{W}/\mathrm{m}\mathrm{m}^{2}$,芯片的平均热流密度达到$53\mathrm{S}.9\mathrm{W}/\mathrm{c}\mathrm{m}^{2}$。GaN - PA的最高结温保持在158℃。在$70^{\circ}\mathrm{C}$大气温度下$2^{\circ}\mathrm{C}$,压降为$\sim$ 270kPa,流速为$\sim 500\displaystyle \mathrm{m}\mathrm{L}/\min$。实验结果表明,微射流冲击冷却是解决硅衬底上高功率异质集成的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信