{"title":"Thermal Management of High Power GaN MMIC on Silicon with Microjet Impingement Cooling","authors":"Miao Yu, Tongsheng Zuo, Min Huang, Jian Zhu","doi":"10.1109/icet55676.2022.9824341","DOIUrl":null,"url":null,"abstract":"A high power GaN monolithic microwave integrated circuit (MMIC) power amplifier (PA) integrated on a silicon interposer with microjet impingement cooling is presented in this work. A Si interposer and a test cube for coolant supply were designed using computational fluid dynamics (CFD) method. The GaN MMIC is a 3-stage PA, and it was integrated on the interposer then assembled in the test cube. The microjets were arranged beneath the $3^{\\mathrm{r}\\mathrm{d}}$ stage transistors of PA to increase the heat transfer efficiency. The fluidic parameters of deionized (DI) water circulation, electrical and thermal characteristics of the chip were monitored in a cooling test platform. The hotspot power density at the junctions achieved 416.5 $\\mathrm{W}/\\mathrm{m}\\mathrm{m}^{2}$ and the average heat flux of the chip was up to $53\\mathrm{S}.9\\mathrm{W}/\\mathrm{c}\\mathrm{m}^{2}$. The maximum junction temperature of GaN PA maintained at 158. $2^{\\circ}\\mathrm{C}$ at $70^{\\circ}\\mathrm{C}$ atmosphere temperature with the pressure drop of $\\sim$270kPa at the flow rate of $\\sim 500\\displaystyle \\mathrm{m}\\mathrm{L}/\\min$. The implementation results have demonstrated that microjet impingement cooling is an effective and practical solution for high power hetero-integration on silicon substrate.","PeriodicalId":166358,"journal":{"name":"2022 IEEE 5th International Conference on Electronics Technology (ICET)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Electronics Technology (ICET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icet55676.2022.9824341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A high power GaN monolithic microwave integrated circuit (MMIC) power amplifier (PA) integrated on a silicon interposer with microjet impingement cooling is presented in this work. A Si interposer and a test cube for coolant supply were designed using computational fluid dynamics (CFD) method. The GaN MMIC is a 3-stage PA, and it was integrated on the interposer then assembled in the test cube. The microjets were arranged beneath the $3^{\mathrm{r}\mathrm{d}}$ stage transistors of PA to increase the heat transfer efficiency. The fluidic parameters of deionized (DI) water circulation, electrical and thermal characteristics of the chip were monitored in a cooling test platform. The hotspot power density at the junctions achieved 416.5 $\mathrm{W}/\mathrm{m}\mathrm{m}^{2}$ and the average heat flux of the chip was up to $53\mathrm{S}.9\mathrm{W}/\mathrm{c}\mathrm{m}^{2}$. The maximum junction temperature of GaN PA maintained at 158. $2^{\circ}\mathrm{C}$ at $70^{\circ}\mathrm{C}$ atmosphere temperature with the pressure drop of $\sim$270kPa at the flow rate of $\sim 500\displaystyle \mathrm{m}\mathrm{L}/\min$. The implementation results have demonstrated that microjet impingement cooling is an effective and practical solution for high power hetero-integration on silicon substrate.