{"title":"An Overview of Photoconductivity in Zn-based Nanomaterials","authors":"I. Uddin","doi":"10.21467/anr.3.1.46-50","DOIUrl":null,"url":null,"abstract":"Photoconductivity is a phenomenon in which the electrical conductivity of a material increases upon exposure to light. Zn-based nanomaterials, including ZnO and ZnS nanoparticles, nanowires, and nanorods, have gained considerable attention in recent years due to their unique photoconductive properties. Photoconductivity is a fundamental property of materials that refers to the increase in electrical conductivity upon absorption of light. This paper provides an overview of photoconductivity in Zn-based nanomaterials, including the mechanisms of photoconductivity, and the factors affecting it, such as size, morphology, and doping, and highlights the prospects of zinc-based nanomaterials in optoelectronics.","PeriodicalId":185865,"journal":{"name":"Advanced Nano Research","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nano Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21467/anr.3.1.46-50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Photoconductivity is a phenomenon in which the electrical conductivity of a material increases upon exposure to light. Zn-based nanomaterials, including ZnO and ZnS nanoparticles, nanowires, and nanorods, have gained considerable attention in recent years due to their unique photoconductive properties. Photoconductivity is a fundamental property of materials that refers to the increase in electrical conductivity upon absorption of light. This paper provides an overview of photoconductivity in Zn-based nanomaterials, including the mechanisms of photoconductivity, and the factors affecting it, such as size, morphology, and doping, and highlights the prospects of zinc-based nanomaterials in optoelectronics.