Toward operational monitoring of forest cover change in California using multitemporal remote sensing data

J. Rogan, J. Franklin, D. Stow, L. Levien, C. Fischer
{"title":"Toward operational monitoring of forest cover change in California using multitemporal remote sensing data","authors":"J. Rogan, J. Franklin, D. Stow, L. Levien, C. Fischer","doi":"10.1109/IGARSS.2001.978266","DOIUrl":null,"url":null,"abstract":"This paper presents preliminary results of research to improve upon an existing operational forest change detection monitoring strategy in California. Comparisons were. made between Landsat 5 TM and Landsat 7 ETM scene normalization techniques (absolute versus, relative). Prior to normalization, scenes containing wildfire smoke plumes were successfully corrected using a space-varying haze equalization algorithm. Simple dark object subtraction provided improved performance over relative (pseudo-invariant feature) approaches. A decision tree classifier produced high change map overall accuracy (86%) for five categories of forest cover change.","PeriodicalId":135740,"journal":{"name":"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2001.978266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents preliminary results of research to improve upon an existing operational forest change detection monitoring strategy in California. Comparisons were. made between Landsat 5 TM and Landsat 7 ETM scene normalization techniques (absolute versus, relative). Prior to normalization, scenes containing wildfire smoke plumes were successfully corrected using a space-varying haze equalization algorithm. Simple dark object subtraction provided improved performance over relative (pseudo-invariant feature) approaches. A decision tree classifier produced high change map overall accuracy (86%) for five categories of forest cover change.
利用多时相遥感数据对加州森林覆盖变化进行业务监测
本文提出了研究的初步结果,以改进现有的操作森林变化检测监测战略在加利福尼亚州。比较。在Landsat 5 TM和Landsat 7 ETM场景归一化技术之间进行比较(绝对vs相对)。在归一化之前,使用空间变化的雾霾均衡算法成功地校正了包含野火烟雾羽的场景。简单的暗对象减法比相对(伪不变特征)方法提供了更好的性能。决策树分类器对五类森林覆盖变化产生了很高的变化图总体精度(86%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信