Hybrid approach for image segmentation using region splitting and clustering techniques

Mariena A. A, J. Sathiaseelan, John T. Abraham
{"title":"Hybrid approach for image segmentation using region splitting and clustering techniques","authors":"Mariena A. A, J. Sathiaseelan, John T. Abraham","doi":"10.1109/ICCSDET.2018.8821144","DOIUrl":null,"url":null,"abstract":"Image segmentation plays a significant role in medical diagnosis. In this paper, a hybrid approach of region splitting and clustering segmentation namely KRC technique has been proposed. This KRC algorithm splits an image into 4 regions. The homogeneous pixels in each region are grouped in to clusters according to the intensity values. The clusters in each region are grouped to form new clusters. The different clusters have been merged to form the segmented image. The segmentation results are analyzed based on the quality metrics such as RI (Rand Index), GCE (global consistency error), VOI (variation of information) and processing time using 50 medical images. The Experimental analysis of KRC shows better results based on the quality metrics when compared to existing techniques namely, K-means clustering, Watershed algorithm and region-growing algorithm.","PeriodicalId":157362,"journal":{"name":"2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSDET.2018.8821144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Image segmentation plays a significant role in medical diagnosis. In this paper, a hybrid approach of region splitting and clustering segmentation namely KRC technique has been proposed. This KRC algorithm splits an image into 4 regions. The homogeneous pixels in each region are grouped in to clusters according to the intensity values. The clusters in each region are grouped to form new clusters. The different clusters have been merged to form the segmented image. The segmentation results are analyzed based on the quality metrics such as RI (Rand Index), GCE (global consistency error), VOI (variation of information) and processing time using 50 medical images. The Experimental analysis of KRC shows better results based on the quality metrics when compared to existing techniques namely, K-means clustering, Watershed algorithm and region-growing algorithm.
基于区域分割和聚类技术的混合图像分割方法
图像分割在医学诊断中起着重要的作用。本文提出了一种区域分割和聚类分割的混合方法,即KRC技术。KRC算法将图像分成4个区域。每个区域的均匀像素根据强度值分组成簇。每个区域的集群被分组形成新的集群。不同的聚类被合并形成分割后的图像。利用50张医学图像,基于Rand指数、全局一致性误差(GCE)、信息变异(VOI)和处理时间等质量指标对分割结果进行分析。实验分析表明,与现有的K-means聚类、Watershed算法和区域增长算法相比,基于质量指标的KRC算法取得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信