A novel SOM-based approach for active contour modeling

Y. Venkatesh, S. Raja, N. Ramya
{"title":"A novel SOM-based approach for active contour modeling","authors":"Y. Venkatesh, S. Raja, N. Ramya","doi":"10.1109/ISSNIP.2004.1417467","DOIUrl":null,"url":null,"abstract":"We integrate the advantages of SOM- and snake-based ACMs in order to extract the desired contour from images. We employ: (i) the feature points to guide the contour, as in the case of SOM-based ACMs; (ii) the gradient and intensity variations in a local region to control the contour movement. However, in contrast with the snake-based ACMs, we do not use an explicit energy functional based on gradient or intensity. The algorithm is tested on synthetic binary and gray-level images, and the results show the superiority of the proposed algorithm over other conventional SOM- and snake-based ACM algorithms.","PeriodicalId":147043,"journal":{"name":"Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, 2004.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSNIP.2004.1417467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We integrate the advantages of SOM- and snake-based ACMs in order to extract the desired contour from images. We employ: (i) the feature points to guide the contour, as in the case of SOM-based ACMs; (ii) the gradient and intensity variations in a local region to control the contour movement. However, in contrast with the snake-based ACMs, we do not use an explicit energy functional based on gradient or intensity. The algorithm is tested on synthetic binary and gray-level images, and the results show the superiority of the proposed algorithm over other conventional SOM- and snake-based ACM algorithms.
一种新的基于som的主动轮廓建模方法
为了从图像中提取所需的轮廓,我们结合了基于SOM和基于蛇的ACMs的优点。我们采用:(i)特征点来引导轮廓,就像基于som的acm一样;(ii)利用局部区域的梯度和强度变化来控制等高线的移动。然而,与基于蛇的acm相比,我们没有使用基于梯度或强度的显式能量泛函。该算法在合成二值图像和灰度图像上进行了测试,结果表明该算法优于其他传统的基于SOM和snake的ACM算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信