Inductive Building of Search Results Ranking Models to Enhance the Relevance of Text Information Retrieval

V. Zosimov, V. Stepashko, O. Bulgakova
{"title":"Inductive Building of Search Results Ranking Models to Enhance the Relevance of Text Information Retrieval","authors":"V. Zosimov, V. Stepashko, O. Bulgakova","doi":"10.1109/DEXA.2015.70","DOIUrl":null,"url":null,"abstract":"The article describes a method for constructing a model for ranking the search engine delivery on the Internet using inductive GMDH algorithms. The method makes it possible to enhance substantially the relevance of scientific and technical information search on the Internet provided to sift spam and the commercial information. The process of discovering the web resources ranking model is described for known search engines and comparing its effectiveness with the constructed model.","PeriodicalId":239815,"journal":{"name":"2015 26th International Workshop on Database and Expert Systems Applications (DEXA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 26th International Workshop on Database and Expert Systems Applications (DEXA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2015.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The article describes a method for constructing a model for ranking the search engine delivery on the Internet using inductive GMDH algorithms. The method makes it possible to enhance substantially the relevance of scientific and technical information search on the Internet provided to sift spam and the commercial information. The process of discovering the web resources ranking model is described for known search engines and comparing its effectiveness with the constructed model.
归纳构建搜索结果排序模型,提高文本信息检索的相关性
本文描述了一种使用归纳式GMDH算法构建搜索引擎在互联网上交付排序模型的方法。该方法可以大大提高互联网上科技信息搜索的相关性,为筛选垃圾信息和商业信息提供了可能。描述了针对已知搜索引擎发现web资源排序模型的过程,并将其与所构建模型的有效性进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信