A non-linear time lower bound for Boolean branching programs

M. Ajtai
{"title":"A non-linear time lower bound for Boolean branching programs","authors":"M. Ajtai","doi":"10.1109/SFFCS.1999.814578","DOIUrl":null,"url":null,"abstract":"We prove that for all positive integer k and for all sufficiently small /spl epsiv/>0 if n is sufficiently large then there is no Boolean (or 2-way) branching program of size less than 2/sup em/ which for all inputs X/spl sube/{0, 1, ..., n-1} computes in time kn the parity of the number of elements of the set of all pairs (x,y) with the property x/spl isin/X, y/spl isin/X, x<y, x+y/spl isin/X. For the proof of this fact we show that if A=(/spl alpha//sub i,j/)/sub i=0, j=0//sup n/ is a random n by n matrix over the field with 2 elements with the condition that \"/spl forall/, j, k, l/spl isin/{0, 1, ..., n-1}, i+j=k+l implies /spl alpha//sub i,j/=/spl alpha//sub k,l/\" then with a high probability the rank of each /spl delta/n by /spl delta/n submatrix of A is at least c/spl delta/|log /spl delta/|/sup -2/n, where c>0 is an absolute constant and n is sufficiently large with respect to /spl delta/.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

Abstract

We prove that for all positive integer k and for all sufficiently small /spl epsiv/>0 if n is sufficiently large then there is no Boolean (or 2-way) branching program of size less than 2/sup em/ which for all inputs X/spl sube/{0, 1, ..., n-1} computes in time kn the parity of the number of elements of the set of all pairs (x,y) with the property x/spl isin/X, y/spl isin/X, x0 is an absolute constant and n is sufficiently large with respect to /spl delta/.
布尔分支程序的非线性时间下界
我们证明了对于所有正整数k和对于所有足够小的/spl epsiv/>0,如果n足够大,那么对于所有输入X/spl sub /{0,1,…, n-1}在时间kn中计算所有对(x,y)集合的元素个数的奇偶性,其性质为x/spl isin/ x,y /spl isin/ x, x0是一个绝对常数,n相对于/spl delta/足够大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信