Adaptive λ-enhancement: Type I versus type II fuzzy implementation

H. Tizhoosh
{"title":"Adaptive λ-enhancement: Type I versus type II fuzzy implementation","authors":"H. Tizhoosh","doi":"10.1109/CIIP.2009.4937872","DOIUrl":null,"url":null,"abstract":"λ-enhancement, introduced by Tizhoosh et al., is a contrast adjustment technique that uses involutive fuzzy complements to find the best gray-level transformation in order to increase the image contrast. Applied on medical images, λ-enhancement can provide good results with respect to visually perceived improvement of object-background discrimination. In this work, we provide two extensions of λ-enhancement. First we extend it to employ interval-valued fuzzy sets (special case of type II fuzzy sets), and second, we provide an adaptive version of both regular (type I) and interval-value (type II) fuzzy λ-enhancement. Using breast ultrasound images, we demonstrate the enhancement effect and compare them with the well-established CLAHE method (contrast-limited adaptive histogram equalization).","PeriodicalId":349149,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Image Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIIP.2009.4937872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

λ-enhancement, introduced by Tizhoosh et al., is a contrast adjustment technique that uses involutive fuzzy complements to find the best gray-level transformation in order to increase the image contrast. Applied on medical images, λ-enhancement can provide good results with respect to visually perceived improvement of object-background discrimination. In this work, we provide two extensions of λ-enhancement. First we extend it to employ interval-valued fuzzy sets (special case of type II fuzzy sets), and second, we provide an adaptive version of both regular (type I) and interval-value (type II) fuzzy λ-enhancement. Using breast ultrasound images, we demonstrate the enhancement effect and compare them with the well-established CLAHE method (contrast-limited adaptive histogram equalization).
自适应λ增强:I型与II型模糊实现
由Tizhoosh等人提出的λ-增强是一种对比度调整技术,它利用模糊互补来找到最佳的灰度变换,以提高图像对比度。将λ增强技术应用于医学图像,可以在视觉感知上提高目标-背景识别的效果。在这项工作中,我们提供了λ增强的两个扩展。首先,我们将其扩展到使用区间值模糊集(II型模糊集的特例),其次,我们提供了正则(I型)和区间值(II型)模糊λ增强的自适应版本。使用乳房超声图像,我们展示了增强效果,并将其与公认的CLAHE方法(对比度有限自适应直方图均衡化)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信