Machine Learning in Action: An Analysis of its Application for Fault Detection in Wireless Sensor Networks

A. Adamova, T. Zhukabayeva, Yerik Mardenov
{"title":"Machine Learning in Action: An Analysis of its Application for Fault Detection in Wireless Sensor Networks","authors":"A. Adamova, T. Zhukabayeva, Yerik Mardenov","doi":"10.1109/SIST58284.2023.10223548","DOIUrl":null,"url":null,"abstract":"In a wireless sensor network (WSN), the presence of faulty nodes can cause serious problems such as data loss, reduced network life, and reduced accuracy of collected data. Therefore, the detection of failed nodes is an important task in the design and deployment of WSNs. The article discusses in detail the methodology for detecting faulty nodes in WSN and the classification of faults in WSN, and also presents a taxonomy of different types of failures in WSN. The mathematical model of WSN failure is considered. A methodology for detecting faulty nodes is shown, which includes data collection, feature extraction, training of machine learning models, and performance evaluation using appropriate metrics. Machine learning such as convolutional neural network (CNN), probabilistic neural network (PNN), multilayer perceptron (MLP), decision trees (DT), support vector machine (SVM), random forest (RF), Bayesian Belief Network (BBN), Gradient Boosting (GB) and Extreme Gradient Boosting (XGBoost). Further research is needed to improve the performance of these methods and explore the use of other algorithms to detect faulty nodes in a WSN.","PeriodicalId":367406,"journal":{"name":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST58284.2023.10223548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a wireless sensor network (WSN), the presence of faulty nodes can cause serious problems such as data loss, reduced network life, and reduced accuracy of collected data. Therefore, the detection of failed nodes is an important task in the design and deployment of WSNs. The article discusses in detail the methodology for detecting faulty nodes in WSN and the classification of faults in WSN, and also presents a taxonomy of different types of failures in WSN. The mathematical model of WSN failure is considered. A methodology for detecting faulty nodes is shown, which includes data collection, feature extraction, training of machine learning models, and performance evaluation using appropriate metrics. Machine learning such as convolutional neural network (CNN), probabilistic neural network (PNN), multilayer perceptron (MLP), decision trees (DT), support vector machine (SVM), random forest (RF), Bayesian Belief Network (BBN), Gradient Boosting (GB) and Extreme Gradient Boosting (XGBoost). Further research is needed to improve the performance of these methods and explore the use of other algorithms to detect faulty nodes in a WSN.
机器学习在行动中的应用:无线传感器网络故障检测中的应用分析
在无线传感器网络(WSN)中,故障节点的存在会导致数据丢失、网络寿命缩短、采集数据准确性降低等严重问题。因此,故障节点的检测是无线传感器网络设计和部署中的一项重要任务。本文详细讨论了无线传感器网络故障节点的检测方法和故障的分类,并对不同类型的故障进行了分类。考虑了无线传感器网络失效的数学模型。展示了一种检测故障节点的方法,其中包括数据收集,特征提取,机器学习模型的训练以及使用适当的度量进行性能评估。机器学习,如卷积神经网络(CNN)、概率神经网络(PNN)、多层感知器(MLP)、决策树(DT)、支持向量机(SVM)、随机森林(RF)、贝叶斯信念网络(BBN)、梯度增强(GB)和极端梯度增强(XGBoost)。需要进一步的研究来提高这些方法的性能,并探索使用其他算法来检测WSN中的故障节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信