Semantically similar document retrieval framework for language model speaker adaptation

J. Staš, D. Zlacký, D. Hládek
{"title":"Semantically similar document retrieval framework for language model speaker adaptation","authors":"J. Staš, D. Zlacký, D. Hládek","doi":"10.1109/RADIOELEK.2016.7477408","DOIUrl":null,"url":null,"abstract":"The paper deals with semantically similar document retrieval framework for language model adaptation in Slovak to a specific speaker speaking style. This research extends our previous study oriented on language model speaker adaptation for transcription of Slovak parliament proceedings with available speaker-specific text data. We used a large corpora for retrieving semantically similar subset of text documents for each speaker to adjust parameters of an existing well-trained language model to a specific speaker speaking style. The same large corpora was used to build original topic-specific model of the Slovak language deployed in our automatic subtitling system. In the proposed framework, the latent semantic indexing was implemented to retrieve the subset of semantically similar documents. The output hypotheses from the first step of speech recognition were used to identify patterns between terms and concepts contained in an unstructured collection of text documents. Preliminary results show a slight improvement in speech recognition accuracy for individual speaker in fully automatic subtitling of parliament speech, broadcast news TV shows and TEDx talks.","PeriodicalId":159747,"journal":{"name":"2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2016.7477408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper deals with semantically similar document retrieval framework for language model adaptation in Slovak to a specific speaker speaking style. This research extends our previous study oriented on language model speaker adaptation for transcription of Slovak parliament proceedings with available speaker-specific text data. We used a large corpora for retrieving semantically similar subset of text documents for each speaker to adjust parameters of an existing well-trained language model to a specific speaker speaking style. The same large corpora was used to build original topic-specific model of the Slovak language deployed in our automatic subtitling system. In the proposed framework, the latent semantic indexing was implemented to retrieve the subset of semantically similar documents. The output hypotheses from the first step of speech recognition were used to identify patterns between terms and concepts contained in an unstructured collection of text documents. Preliminary results show a slight improvement in speech recognition accuracy for individual speaker in fully automatic subtitling of parliament speech, broadcast news TV shows and TEDx talks.
语义相似的语言模型自适应文档检索框架
本文讨论了语义相似的文档检索框架,以使斯洛伐克语的语言模型适应特定的说话人说话风格。这项研究扩展了我们之前的研究面向语言模型说话人适应斯洛伐克议会会议记录的转录与现有的说话人特定文本数据。我们使用大型语料库为每个说话者检索语义相似的文本文档子集,以调整现有训练良好的语言模型的参数以适应特定的说话者说话风格。同样的大型语料库被用于构建斯洛伐克语的原始主题特定模型,该模型部署在我们的自动字幕系统中。在该框架中,实现了潜在语义索引来检索语义相似的文档子集。语音识别第一步的输出假设用于识别包含在非结构化文本文档集合中的术语和概念之间的模式。初步结果表明,在议会演讲、广播新闻电视节目和TEDx演讲的全自动字幕中,语音识别的准确性略有提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信