A. Shima, H. Ashihara, T. Mine, Y. Goto, M. Horiuchi, Y. Wang, S. Talwar, A. Hiraiwa
{"title":"Self-limiting laser thermal process for ultra-shallow junction formation of 50-nm gate CMOS","authors":"A. Shima, H. Ashihara, T. Mine, Y. Goto, M. Horiuchi, Y. Wang, S. Talwar, A. Hiraiwa","doi":"10.1109/IEDM.2003.1269329","DOIUrl":null,"url":null,"abstract":"We have developed a novel LTP (laser thermal process) that dramatically enhances the laser exposure window by controlling the heating process in a self-limiting way (SL-LTP). The Vth roll-offs of MOSFETs formed by this method were remarkably improved compared to those by RTA when offset-spacer and halo-implantation processes were not applied. Its effectiveness was also verified in 50-nm gate CMOS devices for the first time by confirming that the drain current increased with laser fluence beyond the conventional exposure limit.","PeriodicalId":344286,"journal":{"name":"IEEE International Electron Devices Meeting 2003","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Electron Devices Meeting 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2003.1269329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We have developed a novel LTP (laser thermal process) that dramatically enhances the laser exposure window by controlling the heating process in a self-limiting way (SL-LTP). The Vth roll-offs of MOSFETs formed by this method were remarkably improved compared to those by RTA when offset-spacer and halo-implantation processes were not applied. Its effectiveness was also verified in 50-nm gate CMOS devices for the first time by confirming that the drain current increased with laser fluence beyond the conventional exposure limit.