F. Cutolo, S. Carli, P. Parchi, Luca Canalini, M. Ferrari, M. Lisanti, V. Ferrari
{"title":"AR interaction paradigm for closed reduction of long-bone fractures via external fixation","authors":"F. Cutolo, S. Carli, P. Parchi, Luca Canalini, M. Ferrari, M. Lisanti, V. Ferrari","doi":"10.1145/2993369.2996317","DOIUrl":null,"url":null,"abstract":"We present an intuitive and ergonomic AR strategy to be coupled with a standard external fixation system aimed at aiding the accurate closed reduction of long-bone shaft fractures. The correct six DOF alignment between the bone fragments can be retrieved by manually repositioning a pair of reference frames constrained to the two extremities of the fixator so as to minimize the geometric distance, on the image plane, between planned/virtual landmarks and their observed/real counterparts. The reduction accuracy was positively validated in vitro in a pilot study that involved an orthopedic surgeon.","PeriodicalId":396801,"journal":{"name":"Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2993369.2996317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We present an intuitive and ergonomic AR strategy to be coupled with a standard external fixation system aimed at aiding the accurate closed reduction of long-bone shaft fractures. The correct six DOF alignment between the bone fragments can be retrieved by manually repositioning a pair of reference frames constrained to the two extremities of the fixator so as to minimize the geometric distance, on the image plane, between planned/virtual landmarks and their observed/real counterparts. The reduction accuracy was positively validated in vitro in a pilot study that involved an orthopedic surgeon.