NSP-CNN Rolling Bearing Fault Diagnosis Method

Pang Xin-yu, Tong Yu, Zhang Bo-wen, Wei Ji-gui
{"title":"NSP-CNN Rolling Bearing Fault Diagnosis Method","authors":"Pang Xin-yu, Tong Yu, Zhang Bo-wen, Wei Ji-gui","doi":"10.1109/PHM-Nanjing52125.2021.9613092","DOIUrl":null,"url":null,"abstract":"The vibration signal of rolling bearing has non-stationary and nonlinear characteristics. In order to apply the advantages of deep learning recognition of 2-D images to the fault diagnosis of rolling bearings, a multi-layer nested scatter plot-convolutional neural network (NSP-CNN) rolling bearing fault diagnosis model is proposed. The model uses fast Fourier transform to obtain the frequency spectrum of the vibration signal in different directions, and divides the frequency bands. After that, the signals of different bandwidths are given different colors to highlight the fault information of the rolling bearing. Finally, the combined NSP The optimized CNN model is input to the feature map to realize fault diagnosis. The results show that the model can achieve high diagnostic accuracy when diagnosing rolling bearing faults.","PeriodicalId":436428,"journal":{"name":"2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM-Nanjing52125.2021.9613092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The vibration signal of rolling bearing has non-stationary and nonlinear characteristics. In order to apply the advantages of deep learning recognition of 2-D images to the fault diagnosis of rolling bearings, a multi-layer nested scatter plot-convolutional neural network (NSP-CNN) rolling bearing fault diagnosis model is proposed. The model uses fast Fourier transform to obtain the frequency spectrum of the vibration signal in different directions, and divides the frequency bands. After that, the signals of different bandwidths are given different colors to highlight the fault information of the rolling bearing. Finally, the combined NSP The optimized CNN model is input to the feature map to realize fault diagnosis. The results show that the model can achieve high diagnostic accuracy when diagnosing rolling bearing faults.
NSP-CNN滚动轴承故障诊断方法
滚动轴承的振动信号具有非平稳和非线性的特点。为了将深度学习识别二维图像的优势应用到滚动轴承故障诊断中,提出了一种多层嵌套散点图-卷积神经网络(NSP-CNN)滚动轴承故障诊断模型。该模型利用快速傅里叶变换获得振动信号在不同方向上的频谱,并进行频段划分。然后,对不同带宽的信号赋予不同的颜色,以突出显示滚动轴承的故障信息。最后,将组合NSP优化后的CNN模型输入到特征映射中,实现故障诊断。结果表明,该模型在滚动轴承故障诊断中具有较高的诊断精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信