Intelligent control and estimation in power electronics and drives

B. Bose
{"title":"Intelligent control and estimation in power electronics and drives","authors":"B. Bose","doi":"10.1109/IEMDC.1997.604201","DOIUrl":null,"url":null,"abstract":"Intelligent control and estimation of power electronic systems by fuzzy logic and neural network techniques show tremendous promise for the future. The paper discusses primarily the work done in this area in the University of Tennessee Power Electronics Laboratory. Altogether seven projects are discussed These are: (1) fuzzy controlled DC motor drive, (2) induction motor drive with fuzzy efficiency optimizer, (3) fuzzy logic based control of wind generation system, (4) AC machine temperature and winding resistance estimation by fuzzy logic, (3) neural network based feedback signal estimation of AC drive, (6) neuro-fuzzy efficiency optimization of induction motor drive, and (7) waveform estimation by neural network.","PeriodicalId":176640,"journal":{"name":"1997 IEEE International Electric Machines and Drives Conference Record","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 IEEE International Electric Machines and Drives Conference Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.1997.604201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Intelligent control and estimation of power electronic systems by fuzzy logic and neural network techniques show tremendous promise for the future. The paper discusses primarily the work done in this area in the University of Tennessee Power Electronics Laboratory. Altogether seven projects are discussed These are: (1) fuzzy controlled DC motor drive, (2) induction motor drive with fuzzy efficiency optimizer, (3) fuzzy logic based control of wind generation system, (4) AC machine temperature and winding resistance estimation by fuzzy logic, (3) neural network based feedback signal estimation of AC drive, (6) neuro-fuzzy efficiency optimization of induction motor drive, and (7) waveform estimation by neural network.
电力电子和驱动的智能控制和估计
利用模糊逻辑和神经网络技术对电力电子系统进行智能控制与估计,具有广阔的应用前景。本文主要讨论了田纳西大学电力电子实验室在这方面所做的工作。本文共讨论了七个项目,分别是:(1)模糊控制直流电动机驱动,(2)模糊效率优化器控制感应电机驱动,(3)基于模糊逻辑的风力发电系统控制,(4)基于模糊逻辑的交流电机温度和绕组电阻估计,(3)基于神经网络的交流驱动反馈信号估计,(6)神经模糊感应电机驱动效率优化,(7)基于神经网络的波形估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信