Neural Machine Translation Strategies for Generating Honorific-style Korean

Lijie Wang, Mei Tu, Mengxia Zhai, Huadong Wang, Song Liu, Sang Ha Kim
{"title":"Neural Machine Translation Strategies for Generating Honorific-style Korean","authors":"Lijie Wang, Mei Tu, Mengxia Zhai, Huadong Wang, Song Liu, Sang Ha Kim","doi":"10.1109/IALP48816.2019.9037681","DOIUrl":null,"url":null,"abstract":"Expression with honorifics is an important way of dressing up the language and showing politeness in Korean. For machine translation, generating honorifics is indispensable on the formal occasion when the target language is Korean. However, current Neural Machine Translation (NMT) models ignore generation of honorifics, which causes the limitation of the MT application on business occasion. In order to address the problem, this paper presents two strategies to improve Korean honorific generation ratio: 1) we introduce honorific fusion training (HFT) loss under the minimum risk training framework to guide the model to generate honorifics; 2) we introduce a data labeling (DL) method which tags the training corpus with distinctive labels without any modification to the model structure. Our experimental results show that the proposed two strategies can significantly improve the honorific generation ratio by 34.35% and 45.59%.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Expression with honorifics is an important way of dressing up the language and showing politeness in Korean. For machine translation, generating honorifics is indispensable on the formal occasion when the target language is Korean. However, current Neural Machine Translation (NMT) models ignore generation of honorifics, which causes the limitation of the MT application on business occasion. In order to address the problem, this paper presents two strategies to improve Korean honorific generation ratio: 1) we introduce honorific fusion training (HFT) loss under the minimum risk training framework to guide the model to generate honorifics; 2) we introduce a data labeling (DL) method which tags the training corpus with distinctive labels without any modification to the model structure. Our experimental results show that the proposed two strategies can significantly improve the honorific generation ratio by 34.35% and 45.59%.
敬语式韩语的神经机器翻译策略研究
韩国语的敬语表达是修饰语言、表现礼貌的重要方式。对于机器翻译来说,在目的语为韩语的正式场合,敬语的生成是必不可少的。然而,目前的神经机器翻译模型忽略了敬语的生成,这限制了机器翻译在商务场合的应用。针对这一问题,本文提出了提高韩语敬语生成率的两种策略:1)引入最小风险训练框架下的敬语融合训练(HFT)损失来指导模型生成敬语;2)引入数据标注(DL)方法,在不改变模型结构的情况下对训练语料库进行标注。实验结果表明,两种策略均能显著提高敬语生成率,分别提高34.35%和45.59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信