Counting Simplices in Hypergraph Streams

Amit Chakrabarti, Themistoklis K. Haris
{"title":"Counting Simplices in Hypergraph Streams","authors":"Amit Chakrabarti, Themistoklis K. Haris","doi":"10.4230/LIPIcs.ESA.2022.32","DOIUrl":null,"url":null,"abstract":"We consider the problem of space-efficiently estimating the number of simplices in a hypergraph stream. This is the most natural hypergraph generalization of the highly-studied problem of estimating the number of triangles in a graph stream. Our input is a k -uniform hypergraph H with n vertices and m hyperedges, each hyperedge being a k -sized subset of vertices. A k -simplex in H is a subhypergraph on k + 1 vertices X such that all k + 1 possible hyperedges among X exist in H . The goal is to process the hyperedges of H , which arrive in an arbitrary order as a data stream, and compute a good estimate of T k ( H ), the number of k -simplices in H . We design a suite of algorithms for this problem. As with triangle-counting in graphs (which is the special case k = 2), sublinear space is achievable but only under a promise of the form T k ( H ) ≥ T . Under such a promise, our algorithms use at most four passes and together imply a space bound of O for each fixed k ≥ 3, in order to guarantee an estimate within (1 ± ε ) T k ( H ) with probability ≥ 1 − δ . We also give a simpler 1-pass algorithm that achieves O (cid:16) ε − 2 log δ − 1 log n · ( m/T ) (cid:16) ∆ E + ∆ − 1 /k V (cid:17)(cid:17) space, where ∆ E (respectively, ∆ V ) denotes the maximum number of k -simplices that share a hyperedge (respectively, a vertex), which generalizes a previous result for the k = 2 case. We complement these algorithmic results with space lower bounds of the form Ω( ε − 2 ), Ω( m 1+1 /k /T ), Ω( m/T 1 − 1 /k ) and Ω( m ∆ 1 /kV /T ) for multi-pass algorithms and Ω( m ∆ E /T ) for 1-pass algorithms, which show that some of the dependencies on parameters in our upper bounds are nearly tight. Our techniques extend and generalize several different ideas previously developed for triangle counting in graphs, using appropriate innovations to handle the more complicated combinatorics of hypergraphs. 2012 ACM Subject Classification Theory of computation → Sketching and sampling","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"78 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ESA.2022.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of space-efficiently estimating the number of simplices in a hypergraph stream. This is the most natural hypergraph generalization of the highly-studied problem of estimating the number of triangles in a graph stream. Our input is a k -uniform hypergraph H with n vertices and m hyperedges, each hyperedge being a k -sized subset of vertices. A k -simplex in H is a subhypergraph on k + 1 vertices X such that all k + 1 possible hyperedges among X exist in H . The goal is to process the hyperedges of H , which arrive in an arbitrary order as a data stream, and compute a good estimate of T k ( H ), the number of k -simplices in H . We design a suite of algorithms for this problem. As with triangle-counting in graphs (which is the special case k = 2), sublinear space is achievable but only under a promise of the form T k ( H ) ≥ T . Under such a promise, our algorithms use at most four passes and together imply a space bound of O for each fixed k ≥ 3, in order to guarantee an estimate within (1 ± ε ) T k ( H ) with probability ≥ 1 − δ . We also give a simpler 1-pass algorithm that achieves O (cid:16) ε − 2 log δ − 1 log n · ( m/T ) (cid:16) ∆ E + ∆ − 1 /k V (cid:17)(cid:17) space, where ∆ E (respectively, ∆ V ) denotes the maximum number of k -simplices that share a hyperedge (respectively, a vertex), which generalizes a previous result for the k = 2 case. We complement these algorithmic results with space lower bounds of the form Ω( ε − 2 ), Ω( m 1+1 /k /T ), Ω( m/T 1 − 1 /k ) and Ω( m ∆ 1 /kV /T ) for multi-pass algorithms and Ω( m ∆ E /T ) for 1-pass algorithms, which show that some of the dependencies on parameters in our upper bounds are nearly tight. Our techniques extend and generalize several different ideas previously developed for triangle counting in graphs, using appropriate innovations to handle the more complicated combinatorics of hypergraphs. 2012 ACM Subject Classification Theory of computation → Sketching and sampling
超图流中的简单计数
研究了超图流中简单点数目的空间高效估计问题。这是对图流中三角形数量估计问题的最自然的超图推广。我们的输入是一个k均匀的超图H,它有n个顶点和m个超边,每个超边是一个k大小的顶点子集。H中的k -单纯形是k + 1个顶点X上的子超图,使得X中的所有k + 1个可能的超边都存在于H中。目标是处理H的超边,它们以任意顺序作为数据流到达,并计算tk (H)的一个很好的估计,H中的k -简单点的数量。我们为这个问题设计了一套算法。与图中的三角形计数(这是k = 2的特殊情况)一样,次线性空间是可以实现的,但只有在tk (H)≥T的形式下才能实现。在这样的承诺下,我们的算法最多使用四次,并且对每个固定k≥3隐含一个0的空间界,以保证在(1±ε) T内的估计k (H)的概率≥1−δ。我们还给出了一个更简单的1-pass算法,该算法实现了O (cid:16) ε−2 log δ−1 log n·(m/T)(cid: 16)∆E +∆−1 /k V (cid:17)(cid:17)空间,其中∆E(分别,∆V)表示共享超边(分别,一个顶点)的k -simplice的最大数量,它推广了k = 2情况下的先前结果。我们补充了这些算法结果的空间下界形式为Ω(ε−2),Ω(m 1+1 /k /T), Ω(m/T 1−1 /k)和Ω(m∆1 /kV /T)对于多通道算法和Ω(m∆E /T)对于一通道算法,这表明我们的上界中对参数的一些依赖关系几乎是紧密的。我们的技术扩展和推广了以前为图中的三角形计数开发的几个不同的思想,使用适当的创新来处理更复杂的超图组合。2012 ACM学科分类:计算理论→素描与抽样
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信