{"title":"Community Detection on Large Complex Attribute Network","authors":"Chen Zhe, Aixin Sun, Xiaokui Xiao","doi":"10.1145/3292500.3330721","DOIUrl":null,"url":null,"abstract":"A large payment network contains millions of merchants and billions of transactions, and the merchants are described in a large number of attributes with incomplete values. Understanding its community structures is crucial to ensure its sustainable and long lasting. Knowing a merchant's community is also important from many applications - risk management, compliance, legal and marketing. To detect communities, an algorithm has to take advances from both attribute and topological information. Further, the method has to be able to handle incomplete and complex attributes. In this paper, we propose a framework named AGGMMR to effectively address the challenges come from scalability, mixed attributes, and incomplete value. We evaluate our proposed framework on four benchmark datasets against five strong baselines. More importantly, we provide a case study of running AGGMMR on a large network from PayPal which contains $100 million$ merchants with $1.5 billion$ transactions. The results demonstrate AGGMMR's effectiveness and practicability.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
A large payment network contains millions of merchants and billions of transactions, and the merchants are described in a large number of attributes with incomplete values. Understanding its community structures is crucial to ensure its sustainable and long lasting. Knowing a merchant's community is also important from many applications - risk management, compliance, legal and marketing. To detect communities, an algorithm has to take advances from both attribute and topological information. Further, the method has to be able to handle incomplete and complex attributes. In this paper, we propose a framework named AGGMMR to effectively address the challenges come from scalability, mixed attributes, and incomplete value. We evaluate our proposed framework on four benchmark datasets against five strong baselines. More importantly, we provide a case study of running AGGMMR on a large network from PayPal which contains $100 million$ merchants with $1.5 billion$ transactions. The results demonstrate AGGMMR's effectiveness and practicability.