Evaluation of radio propagation parameters for field strength prediction using neural networks

A. Leros, A. Alexandridis, K. Dangakis, P. Kostarakis
{"title":"Evaluation of radio propagation parameters for field strength prediction using neural networks","authors":"A. Leros, A. Alexandridis, K. Dangakis, P. Kostarakis","doi":"10.1109/APWC.1998.730628","DOIUrl":null,"url":null,"abstract":"Radio propagation models for field strength prediction are essential for designing and installing a mobile radio communications system. Typical backpropagation neural network (BPN) models with different input parameters are developed and used to evaluate and assess the relative importance of a set of radio propagation parameters for field strength prediction. The NN models are trained on data measurements of propagation loss with terrain information taken in an urban area (Athens region) in the 900 MHz band. The performance of all NN models is evaluated by comparing their prediction error statistics of average value, standard deviation, root mean square and the correlation between their predicted values and the true data measurements. The NN model with the best performance provides an indication of the most important set of parameters for field strength prediction.","PeriodicalId":246376,"journal":{"name":"1998 IEEE-APS Conference on Antennas and Propagation for Wireless Communications (Cat. No.98EX184)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE-APS Conference on Antennas and Propagation for Wireless Communications (Cat. No.98EX184)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWC.1998.730628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Radio propagation models for field strength prediction are essential for designing and installing a mobile radio communications system. Typical backpropagation neural network (BPN) models with different input parameters are developed and used to evaluate and assess the relative importance of a set of radio propagation parameters for field strength prediction. The NN models are trained on data measurements of propagation loss with terrain information taken in an urban area (Athens region) in the 900 MHz band. The performance of all NN models is evaluated by comparing their prediction error statistics of average value, standard deviation, root mean square and the correlation between their predicted values and the true data measurements. The NN model with the best performance provides an indication of the most important set of parameters for field strength prediction.
利用神经网络进行场强预测的无线电传播参数评估
用于场强预测的无线电传播模型对于设计和安装移动无线电通信系统至关重要。建立了具有不同输入参数的典型反向传播神经网络(BPN)模型,并用于评估和评估一组无线电传播参数对场强预测的相对重要性。神经网络模型是在900 MHz频段的城市地区(雅典地区)的地形信息的传播损失数据测量上训练的。通过比较其平均值、标准差、均方根的预测误差统计量以及预测值与真实数据测量值之间的相关性来评估所有NN模型的性能。性能最好的神经网络模型为场强预测提供了一组最重要的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信