On-board Sensor Data Monitoring System For Unmanned Aerial Vehicle PHM

Mingxi Jiang, Benkuan Wang, Datong Liu, Yu Peng
{"title":"On-board Sensor Data Monitoring System For Unmanned Aerial Vehicle PHM","authors":"Mingxi Jiang, Benkuan Wang, Datong Liu, Yu Peng","doi":"10.1109/SDPC.2019.00102","DOIUrl":null,"url":null,"abstract":"Due to the excellent performance and cost-effective, unmanned aerial vehicle (UAV) has been widely used in civil and military fields. But the accident rate of UAV is much higher than that of manned aircraft. Therefore, the sensor data monitoring of UAV has become a research hotspot, which can further support UAV Prognostics and Health Management (PHM). However, the on-board computing resources and power are limited, and most state-of-the-art sensor data monitoring methods can only be operated on ground. A huge challenge is presented to UAV real-time condition monitoring. In this paper, an on-board system is developed for real-time fixed-wing UAV sensor monitoring. Firstly, an LSTM network is designed to fulfill accurate estimation of UAV sensor data. Secondly, the sensor data estimation model with high computational complexity is accelerated by utilizing High Level Synthesis (HLS). Finally, the calculation optimized model is deployed in an on-board embedded hardware platform. The simulated fixed-wing UAV flight data are used to verify the performance of the proposed system. The experimental results show that the proposed system is effective for fixed-wing UAV real-time sensor data estimation.","PeriodicalId":403595,"journal":{"name":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDPC.2019.00102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to the excellent performance and cost-effective, unmanned aerial vehicle (UAV) has been widely used in civil and military fields. But the accident rate of UAV is much higher than that of manned aircraft. Therefore, the sensor data monitoring of UAV has become a research hotspot, which can further support UAV Prognostics and Health Management (PHM). However, the on-board computing resources and power are limited, and most state-of-the-art sensor data monitoring methods can only be operated on ground. A huge challenge is presented to UAV real-time condition monitoring. In this paper, an on-board system is developed for real-time fixed-wing UAV sensor monitoring. Firstly, an LSTM network is designed to fulfill accurate estimation of UAV sensor data. Secondly, the sensor data estimation model with high computational complexity is accelerated by utilizing High Level Synthesis (HLS). Finally, the calculation optimized model is deployed in an on-board embedded hardware platform. The simulated fixed-wing UAV flight data are used to verify the performance of the proposed system. The experimental results show that the proposed system is effective for fixed-wing UAV real-time sensor data estimation.
无人机PHM机载传感器数据监测系统
无人机由于其优异的性能和性价比,在民用和军事领域得到了广泛的应用。但无人机的事故率远高于有人驾驶飞机。因此,无人机的传感器数据监测成为一个研究热点,可以进一步支持无人机的预测与健康管理。然而,机载计算资源和功率是有限的,而且大多数最先进的传感器数据监测方法只能在地面上操作。无人机的实时状态监测面临着巨大的挑战。本文开发了一种用于固定翼无人机传感器实时监控的机载系统。首先,设计LSTM网络实现无人机传感器数据的精确估计;其次,利用高层次综合(high Level Synthesis, HLS)对计算复杂度较高的传感器数据估计模型进行加速;最后,将计算优化后的模型部署在一个车载嵌入式硬件平台上。利用固定翼无人机的模拟飞行数据验证了所提系统的性能。实验结果表明,该系统对固定翼无人机传感器数据的实时估计是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信