SCL-SLAM: A Scan Context-enabled LiDAR SLAM Using Factor Graph-Based Optimization

Zhiqiang Chen, Yuhua Qi, Shipeng Zhong, Dapeng Feng, Qiming Chen, Hongbo Chen
{"title":"SCL-SLAM: A Scan Context-enabled LiDAR SLAM Using Factor Graph-Based Optimization","authors":"Zhiqiang Chen, Yuhua Qi, Shipeng Zhong, Dapeng Feng, Qiming Chen, Hongbo Chen","doi":"10.1109/ICUS55513.2022.9987005","DOIUrl":null,"url":null,"abstract":"In this paper, we present a complete LiDAR SLAM framework, SCL-SLAM, by integrating the loop closure module with the Scan Context descriptor into the tightly-coupled LiDAR-Inertial odometry FAST-LIO2. As a front-end, the direct LiDAR-Inertial odometry module efficiently and robustly produces motion estimates and undistorted scans. Toward the global localization based on 3D LiDAR scans, the lightweight Scan Context descriptor is used in the loop detection module. Additionally, the scan input is filtered through the keyframe selection module to improve the computation efficiency. As a back-end, a pose graph optimization is performed for the optimized trajectory and globally consistent map. SCL-SLAM is extensively evaluated on public datasets and a robot platform over various scales and environments. Experimental result shows that SCL-SLAM achieves higher accuracy than other state-of-art LiDAR SLAM systems and real-time performance. We also extend the proposed system to a centralized architecture SLAM framework for the robot team to use with 3D LiDAR observations.","PeriodicalId":345773,"journal":{"name":"2022 IEEE International Conference on Unmanned Systems (ICUS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS55513.2022.9987005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a complete LiDAR SLAM framework, SCL-SLAM, by integrating the loop closure module with the Scan Context descriptor into the tightly-coupled LiDAR-Inertial odometry FAST-LIO2. As a front-end, the direct LiDAR-Inertial odometry module efficiently and robustly produces motion estimates and undistorted scans. Toward the global localization based on 3D LiDAR scans, the lightweight Scan Context descriptor is used in the loop detection module. Additionally, the scan input is filtered through the keyframe selection module to improve the computation efficiency. As a back-end, a pose graph optimization is performed for the optimized trajectory and globally consistent map. SCL-SLAM is extensively evaluated on public datasets and a robot platform over various scales and environments. Experimental result shows that SCL-SLAM achieves higher accuracy than other state-of-art LiDAR SLAM systems and real-time performance. We also extend the proposed system to a centralized architecture SLAM framework for the robot team to use with 3D LiDAR observations.
SCL-SLAM:基于因子图优化的扫描上下文激光雷达SLAM
在本文中,我们提出了一个完整的LiDAR SLAM框架,SCL-SLAM,通过将环路闭合模块与扫描上下文描述符集成到紧密耦合的LiDAR-惯性里程计FAST-LIO2中。作为前端,直接激光雷达-惯性里程计模块高效、鲁棒地产生运动估计和无失真扫描。对于基于3D激光雷达扫描的全局定位,环路检测模块中使用了轻量级的扫描上下文描述符。另外,通过关键帧选择模块对扫描输入进行滤波,提高了计算效率。作为后端,对优化后的轨迹和全局一致图进行姿态图优化。在各种规模和环境的公共数据集和机器人平台上对SCL-SLAM进行了广泛的评估。实验结果表明,与其他激光雷达SLAM系统相比,SCL-SLAM系统具有更高的精度和实时性。我们还将提出的系统扩展为集中式架构SLAM框架,供机器人团队与3D激光雷达观测一起使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信