MemBrain: Automated Application Guidance for Hybrid Memory Systems

Matthew Ben Olson, Tong Zhou, Michael R. Jantz, K. Doshi, M. G. Lopez, Oscar R. Hernandez
{"title":"MemBrain: Automated Application Guidance for Hybrid Memory Systems","authors":"Matthew Ben Olson, Tong Zhou, Michael R. Jantz, K. Doshi, M. G. Lopez, Oscar R. Hernandez","doi":"10.1109/NAS.2018.8515694","DOIUrl":null,"url":null,"abstract":"Computer systems with multiple tiers of memory devices with different latency, bandwidth, and capacity char­acteristics are quickly becoming mainstream. Due to cost and physical limitations, device tiers that enable better performance typically include less capacity. Such heterogeneous memory systems require alternative data management strategies to utilize the capacity-constrained resources efficiently. However, current techniques are often limited because they rely on inflexible hardware caching or manual modifications to source code. This paper introduces MemBrain, a new memory management framework that automates the production and use of data-tiering guidance for applications on hybrid memory systems. MemBrain employs program profiling and source code analysis to enable transparent and efficient data placement across different types of memory. It automatically clusters data with similar expected usage patterns into page-aligned regions of virtual addresses (arenas), and uses offline profile feedback to direct low-level tier assignments for each region. We evaluate MemBrain on an Intel Knights Landing server machine with an upper tier of limited capacity (but higher bandwidth) MCDRAM and a lower tier of conventional DDR4 using a selection of high-bandwidth benchmarks from SPEC CPU 2017 as well as two proxy apps (Lulesh and AMG), and one full scale scientific application (QMCPACK). Our evaluation shows that MemBrain can achieve significant performance and efficiency improvements compared to current guided and unguided management strategies.","PeriodicalId":115970,"journal":{"name":"2018 IEEE International Conference on Networking, Architecture and Storage (NAS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Networking, Architecture and Storage (NAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAS.2018.8515694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Computer systems with multiple tiers of memory devices with different latency, bandwidth, and capacity char­acteristics are quickly becoming mainstream. Due to cost and physical limitations, device tiers that enable better performance typically include less capacity. Such heterogeneous memory systems require alternative data management strategies to utilize the capacity-constrained resources efficiently. However, current techniques are often limited because they rely on inflexible hardware caching or manual modifications to source code. This paper introduces MemBrain, a new memory management framework that automates the production and use of data-tiering guidance for applications on hybrid memory systems. MemBrain employs program profiling and source code analysis to enable transparent and efficient data placement across different types of memory. It automatically clusters data with similar expected usage patterns into page-aligned regions of virtual addresses (arenas), and uses offline profile feedback to direct low-level tier assignments for each region. We evaluate MemBrain on an Intel Knights Landing server machine with an upper tier of limited capacity (but higher bandwidth) MCDRAM and a lower tier of conventional DDR4 using a selection of high-bandwidth benchmarks from SPEC CPU 2017 as well as two proxy apps (Lulesh and AMG), and one full scale scientific application (QMCPACK). Our evaluation shows that MemBrain can achieve significant performance and efficiency improvements compared to current guided and unguided management strategies.
MemBrain:混合存储系统的自动应用指南
具有不同延迟、带宽和容量特征的多层存储设备的计算机系统正迅速成为主流。由于成本和物理限制,能够实现更好性能的设备层通常包含较少的容量。这种异构内存系统需要替代的数据管理策略来有效地利用容量受限的资源。然而,当前的技术常常受到限制,因为它们依赖于不灵活的硬件缓存或对源代码的手动修改。本文介绍了MemBrain,一个新的内存管理框架,它可以自动生成和使用混合存储系统上的应用程序的数据分层指导。MemBrain采用程序分析和源代码分析来实现跨不同类型内存的透明和高效的数据放置。它自动将具有类似预期使用模式的数据聚类到虚拟地址(竞技场)的页面对齐区域中,并使用离线配置文件反馈来指导每个区域的低级层分配。我们在英特尔Knights Landing服务器机器上评估MemBrain,该服务器具有上层有限容量(但带宽更高)的MCDRAM和下层传统DDR4,使用SPEC CPU 2017的高带宽基准测试以及两个代理应用程序(Lulesh和AMG)和一个全面的科学应用程序(QMCPACK)。我们的评估表明,与目前的引导和非引导管理策略相比,MemBrain可以显著提高性能和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信