Understanding the Performances of Sparse Compression Formats Using Data Parallel Programming Model

Ichrak Mehrez, O. Hamdi-Larbi, T. Dufaud, N. Emad
{"title":"Understanding the Performances of Sparse Compression Formats Using Data Parallel Programming Model","authors":"Ichrak Mehrez, O. Hamdi-Larbi, T. Dufaud, N. Emad","doi":"10.1109/HPCS.2017.103","DOIUrl":null,"url":null,"abstract":"Several applications in numerical scientific computing involve very large sparse matrices with a regular or irregular sparse structure. These matrices can be stored using special compression formats (storing only non-zero elements) to reduce memory space and processing time. The choice of the optimal format is a critical process that involves several criteria. The general context of this work is to propose an auto-tuner system that, given a sparse matrix, a numerical method, a parallel programming model and an architecture, can automatically select the Optimal Compression Format (OCF). In this paper we study the performance of two different sparse compression formats namely CSR (Compressed Sparse Row) and CSC (Compressed Sparse Column). Thus, we propose data parallel algorithms for Sparse Matrix Vector Product in the case of each format. We extract a set of parameters that can help us to select the more suitable compression format for a given sparse matrix.","PeriodicalId":115758,"journal":{"name":"2017 International Conference on High Performance Computing & Simulation (HPCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS.2017.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Several applications in numerical scientific computing involve very large sparse matrices with a regular or irregular sparse structure. These matrices can be stored using special compression formats (storing only non-zero elements) to reduce memory space and processing time. The choice of the optimal format is a critical process that involves several criteria. The general context of this work is to propose an auto-tuner system that, given a sparse matrix, a numerical method, a parallel programming model and an architecture, can automatically select the Optimal Compression Format (OCF). In this paper we study the performance of two different sparse compression formats namely CSR (Compressed Sparse Row) and CSC (Compressed Sparse Column). Thus, we propose data parallel algorithms for Sparse Matrix Vector Product in the case of each format. We extract a set of parameters that can help us to select the more suitable compression format for a given sparse matrix.
利用数据并行编程模型理解稀疏压缩格式的性能
在数值科学计算中的一些应用涉及具有规则或不规则稀疏结构的非常大的稀疏矩阵。这些矩阵可以使用特殊的压缩格式(只存储非零元素)来存储,以减少内存空间和处理时间。选择最佳格式是一个关键的过程,涉及几个标准。这项工作的总体背景是提出一个自动调谐系统,在给定稀疏矩阵、数值方法、并行编程模型和架构的情况下,可以自动选择最优压缩格式(OCF)。本文研究了两种不同的稀疏压缩格式CSR (Compressed sparse Row)和CSC (Compressed sparse Column)的性能。因此,我们在每种格式的情况下提出了稀疏矩阵向量积的数据并行算法。我们提取了一组参数,可以帮助我们为给定的稀疏矩阵选择更合适的压缩格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信