The multiplicative complexity of quadratic Boolean functions

R. Mirwald, C. Schnorr
{"title":"The multiplicative complexity of quadratic Boolean functions","authors":"R. Mirwald, C. Schnorr","doi":"10.1109/SFCS.1987.57","DOIUrl":null,"url":null,"abstract":"Let the multiplicative complexity L(f) of a boolean function f be the minimal number of ∧-gates that are sufficient to evaluate f by circuits over the basis ∧,⊕,1. We give a polynomial time algorithm which for quadratic boolean forms f=⊕i≠jaijxixj determines L(f) from the coefficients aij. Two quadratic forms f,g have the same complexity L(f) = L(g) iff they are isomorphic by a linear isomorphism. We also determine the multiplicative complexity of pairs of quadratic boolean forms. We give a geometric interpretation to the complexity L(f1,f2) of pairs of quadratic forms.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1987.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Let the multiplicative complexity L(f) of a boolean function f be the minimal number of ∧-gates that are sufficient to evaluate f by circuits over the basis ∧,⊕,1. We give a polynomial time algorithm which for quadratic boolean forms f=⊕i≠jaijxixj determines L(f) from the coefficients aij. Two quadratic forms f,g have the same complexity L(f) = L(g) iff they are isomorphic by a linear isomorphism. We also determine the multiplicative complexity of pairs of quadratic boolean forms. We give a geometric interpretation to the complexity L(f1,f2) of pairs of quadratic forms.
二次布尔函数的乘法复杂度
设一个布尔函数f的乘法复杂度L(f)是在基∧,⊕,1上足以计算f的回路的最小∧门数。对于二次布尔形式f=⊕i≠jaijxixj,我们给出了一个多项式时间算法,该算法由系数aij确定L(f)。两个二次型f,g具有相同的复杂度L(f) = L(g)如果它们是线性同构的。我们还确定了二次布尔型对的乘法复杂度。对二次型对的复杂度L(f1,f2)给出了几何解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信