Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces

Alev Kelleci
{"title":"Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces","authors":"Alev Kelleci","doi":"10.33401/fujma.785781","DOIUrl":null,"url":null,"abstract":"In this paper, we classify warped translation surfaces being invariant surfaces of i-type, that is, the generating curve has formed by the intersection of the surface with the isotropic xz-plane in the three-dimensional simply isotropic space $\\mathbb I^3$ under the condi tio n  $\\Delta^{J}x_i=\\lambda_i x_i,$ w ith  J=I,II .  Here, $\\Delta^{J}$ is the Laplace operator with respect to first and second fundamental form and $\\lambda_i$, $i=1,2,3$ are some real numbers. Also, as an application, we give some examples for these surfaces and also some explicit graphics of them. All graphics have been plotted with Maple14.","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.785781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we classify warped translation surfaces being invariant surfaces of i-type, that is, the generating curve has formed by the intersection of the surface with the isotropic xz-plane in the three-dimensional simply isotropic space $\mathbb I^3$ under the condi tio n  $\Delta^{J}x_i=\lambda_i x_i,$ w ith  J=I,II .  Here, $\Delta^{J}$ is the Laplace operator with respect to first and second fundamental form and $\lambda_i$, $i=1,2,3$ are some real numbers. Also, as an application, we give some examples for these surfaces and also some explicit graphics of them. All graphics have been plotted with Maple14.
简单各向同性三维空间中有限型翘曲平移曲面
本文将翘曲平移曲面分类为I型不变曲面,即在J=I,II的条件下,在$\Delta^{J}x_i=\lambda_i x_i,$ w下,曲面与三维简单各向同性空间$\mathbb I^3$中的各向同性xz平面相交形成生成曲线。这里,$\Delta^{J}$是关于第一和第二基本形式的拉普拉斯算子$\lambda_i$$i=1,2,3$是一些实数。同时,作为一种应用,我们给出了这些曲面的一些例子和一些明确的图形。所有的图形都是用Maple14绘制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信