Structure Matters - A New Approach for Data Flow Tracking

Enrico Lovat, Florian Kelbert
{"title":"Structure Matters - A New Approach for Data Flow Tracking","authors":"Enrico Lovat, Florian Kelbert","doi":"10.1109/SPW.2014.15","DOIUrl":null,"url":null,"abstract":"Usage control (UC) is concerned with how data may or may not be used after initial access has been granted. UC requirements are expressed in terms of data (e.g. a picture, a song) which exist within a system in forms of different technical representations (containers, e.g. files, memory locations, windows). A model combining UC enforcement with data flow tracking across containers has been proposed in the literature, but it exhibits a high false positives detection rate. In this paper we propose a refined approach for data flow tracking that mitigates this over approximation problem by leveraging information about the inherent structure of the data being tracked. We propose a formal model and show some exemplary instantiations.","PeriodicalId":142224,"journal":{"name":"2014 IEEE Security and Privacy Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Security and Privacy Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2014.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Usage control (UC) is concerned with how data may or may not be used after initial access has been granted. UC requirements are expressed in terms of data (e.g. a picture, a song) which exist within a system in forms of different technical representations (containers, e.g. files, memory locations, windows). A model combining UC enforcement with data flow tracking across containers has been proposed in the literature, but it exhibits a high false positives detection rate. In this paper we propose a refined approach for data flow tracking that mitigates this over approximation problem by leveraging information about the inherent structure of the data being tracked. We propose a formal model and show some exemplary instantiations.
结构问题——数据流跟踪的新方法
使用控制(UC)关注的是在授予初始访问权限后如何使用或不使用数据。UC需求是用数据(例如一张图片、一首歌)来表达的,这些数据以不同的技术表示形式(容器,例如文件、内存位置、窗口)存在于系统中。文献中已经提出了一种将UC强制执行与跨容器的数据流跟踪相结合的模型,但它显示出很高的误报检测率。在本文中,我们提出了一种数据流跟踪的改进方法,通过利用被跟踪数据的固有结构信息来缓解这种过度逼近问题。我们提出了一个形式化模型,并给出了一些示例实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信