F. S. Utku, Eren Seckin, G. Goller, C. Tamerler, M. Urgen
{"title":"Effect of titanium surface properties on electrochemically induced biomineralization","authors":"F. S. Utku, Eren Seckin, G. Goller, C. Tamerler, M. Urgen","doi":"10.1109/BIYOMUT.2010.5479780","DOIUrl":null,"url":null,"abstract":"Titanium and its alloys are used in dental and orthopaedic applications. Chemical and physical properties of implant surfaces are important determinants of implant stability and osteointegration. In this study, pure titanium, anodized titania and ordered titanium dioxide nanotubular plates were coated with calcium phosphate using a modified SBF solution and pulsed electrodeposition process at 80°C, with a current density of -10mA/cm2. Calcium phosphate deposition was characterized using XRD, FTIR and FE-SEM. Although carbonated hydroxyapatite and calcium deficient hydroxyapatite phases were deposited on all surface types, the deposition on nanoporous titania displayed significant differences from those on anodized titania and flat titanium. Our results indicated that ordered titanium oxide nanotubes providing a larger surface area for hydroxide ion generation, enabled deposition of carbonated hydroxyapatite phases, which flat and anodized titania plates do not to the same extent under same reaction conditions.","PeriodicalId":180275,"journal":{"name":"2010 15th National Biomedical Engineering Meeting","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2010.5479780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Titanium and its alloys are used in dental and orthopaedic applications. Chemical and physical properties of implant surfaces are important determinants of implant stability and osteointegration. In this study, pure titanium, anodized titania and ordered titanium dioxide nanotubular plates were coated with calcium phosphate using a modified SBF solution and pulsed electrodeposition process at 80°C, with a current density of -10mA/cm2. Calcium phosphate deposition was characterized using XRD, FTIR and FE-SEM. Although carbonated hydroxyapatite and calcium deficient hydroxyapatite phases were deposited on all surface types, the deposition on nanoporous titania displayed significant differences from those on anodized titania and flat titanium. Our results indicated that ordered titanium oxide nanotubes providing a larger surface area for hydroxide ion generation, enabled deposition of carbonated hydroxyapatite phases, which flat and anodized titania plates do not to the same extent under same reaction conditions.