Multifunction content addressable memory for parallel speech understanding

R. Cagle, R. Holl, R. Demara
{"title":"Multifunction content addressable memory for parallel speech understanding","authors":"R. Cagle, R. Holl, R. Demara","doi":"10.1109/SOUTHC.1994.498125","DOIUrl":null,"url":null,"abstract":"Content Addressable Memories (CAMs) allow considerably finer-grained parallelism than conventional shared or distributed memory multi-processors. This fine-grained \"Processor-In-Memory\" concept can be employed to a large degree during Semantic Network processing in support of Artificial Intelligence (AI) with specific applications in speech and natural language processing. A special-purpose CAM configuration is presented based on requirements for a nominally-sized 64 K node semantic network with 8 bit-markers and 32 relationship types. Analysis for a target application shows that the extensive use of parallel Marker-Propagation and Set Theoretic Operations yields approximately 30-fold speedup over systems with standard Random Access Memories.","PeriodicalId":164672,"journal":{"name":"Conference Record Southcon","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record Southcon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOUTHC.1994.498125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Content Addressable Memories (CAMs) allow considerably finer-grained parallelism than conventional shared or distributed memory multi-processors. This fine-grained "Processor-In-Memory" concept can be employed to a large degree during Semantic Network processing in support of Artificial Intelligence (AI) with specific applications in speech and natural language processing. A special-purpose CAM configuration is presented based on requirements for a nominally-sized 64 K node semantic network with 8 bit-markers and 32 relationship types. Analysis for a target application shows that the extensive use of parallel Marker-Propagation and Set Theoretic Operations yields approximately 30-fold speedup over systems with standard Random Access Memories.
用于并行语音理解的多功能内容可寻址存储器
与传统的共享或分布式内存多处理器相比,内容可寻址内存(CAMs)允许相当细粒度的并行性。这种细粒度的“内存处理器”概念可以在语义网络处理过程中得到很大程度的应用,以支持人工智能(AI)在语音和自然语言处理中的特定应用。基于具有8位标记和32种关系类型的名义大小的64 K节点语义网络的需求,提出了一个专用CAM配置。对目标应用程序的分析表明,广泛使用并行标记传播和集合理论运算比使用标准随机存取存储器的系统产生大约30倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信