Convergence in Viral Outbreak Research: Using Natural Language Processing to Define Network Bridges in the Bench-Bedside-Population Paradigm

Margaret V. Powers-Fletcher, Erin McCabe, Sally Luken, Danny T. Y. Wu, Philip A Hagedorn, E. Edgerton, A. Koshoffer, Dorcas Washington, Suraj Kannayyagari, Jason K. W. Lee, J. Latessa, Anita Shah, J. J. Lee
{"title":"Convergence in Viral Outbreak Research: Using Natural Language Processing to Define Network Bridges in the Bench-Bedside-Population Paradigm","authors":"Margaret V. Powers-Fletcher, Erin McCabe, Sally Luken, Danny T. Y. Wu, Philip A Hagedorn, E. Edgerton, A. Koshoffer, Dorcas Washington, Suraj Kannayyagari, Jason K. W. Lee, J. Latessa, Anita Shah, J. J. Lee","doi":"10.1162/99608F92.CC479D52","DOIUrl":null,"url":null,"abstract":"Research on viral outbreaks at the pandemic scale responds to heightened social urgency and the need to expedite scientific discovery from the “bench” to the “bedside” to the wider population. We sought to better understand translational research within the context of pandemics, both historical and present day, by tracking publication trends in the immediate aftermath of virus outbreaks. We used a blend of natural language processing (NLP), social network analysis and human annotation approaches to analyze the 85,663 articles in the COVID-19 Open Research Dataset (CORD-19). We found stable and repeated characteristics throughout subsets of peer-reviewed published literature corresponding to seven different viral outbreaks over the last several decades. Three distinct groups or “neighborhoods” recurred across all of the model networks – (1) bench science, (2) clinical treatments, and (3) broader public health trends. Notably, in each historical virus model, small “bridge” nodes representing translational research connect the three otherwise disconnected neighborhoods. These bridging studies embody research convergence by both integrating the vocabulary and methods of different disciplines and bodies of previous work and by citing other papers beyond their narrow field. In the case of COVID-19, the literature continues to evolve apace along with the virus, and we can witness the phases of response unfold as the science progresses. This study demonstrates how the different sectors of biomedical research respond independently to public health emergencies and how translational research can facilitate greater information synthesis and exchange between disciplinary silos.","PeriodicalId":194618,"journal":{"name":"Issue 3.1, Winter 2021","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Issue 3.1, Winter 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/99608F92.CC479D52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Research on viral outbreaks at the pandemic scale responds to heightened social urgency and the need to expedite scientific discovery from the “bench” to the “bedside” to the wider population. We sought to better understand translational research within the context of pandemics, both historical and present day, by tracking publication trends in the immediate aftermath of virus outbreaks. We used a blend of natural language processing (NLP), social network analysis and human annotation approaches to analyze the 85,663 articles in the COVID-19 Open Research Dataset (CORD-19). We found stable and repeated characteristics throughout subsets of peer-reviewed published literature corresponding to seven different viral outbreaks over the last several decades. Three distinct groups or “neighborhoods” recurred across all of the model networks – (1) bench science, (2) clinical treatments, and (3) broader public health trends. Notably, in each historical virus model, small “bridge” nodes representing translational research connect the three otherwise disconnected neighborhoods. These bridging studies embody research convergence by both integrating the vocabulary and methods of different disciplines and bodies of previous work and by citing other papers beyond their narrow field. In the case of COVID-19, the literature continues to evolve apace along with the virus, and we can witness the phases of response unfold as the science progresses. This study demonstrates how the different sectors of biomedical research respond independently to public health emergencies and how translational research can facilitate greater information synthesis and exchange between disciplinary silos.
病毒爆发研究中的趋同:使用自然语言处理来定义台架-床架-人口范式中的网络桥梁
对大流行规模的病毒爆发进行研究,是为了应对日益加剧的社会紧迫性,以及加快科学发现从“实验室”到“床边”再到更广泛人群的需要。我们试图通过跟踪病毒爆发后的出版趋势,更好地了解历史和当今大流行背景下的转化研究。我们使用自然语言处理(NLP)、社会网络分析和人工注释方法的混合方法来分析COVID-19开放研究数据集(CORD-19)中的85,663篇文章。我们在同行评审的已发表文献的子集中发现了稳定和重复的特征,这些特征对应于过去几十年里七种不同的病毒爆发。三个不同的群体或“社区”在所有模型网络中反复出现——(1)实验科学,(2)临床治疗,(3)更广泛的公共卫生趋势。值得注意的是,在每个历史病毒模型中,代表转化研究的小“桥”节点连接了三个不相连的邻居。这些桥接研究通过整合不同学科和先前工作的词汇和方法以及引用超出其狭窄领域的其他论文,体现了研究的融合。就COVID-19而言,文献随着病毒的发展而不断发展,我们可以看到随着科学的进步,应对措施的各个阶段也在展开。本研究展示了生物医学研究的不同部门如何独立应对突发公共卫生事件,以及转化研究如何促进学科竖井之间的信息综合和交流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信