Scenarios generation for multi-agent simulation of electricity markets based on intelligent data analysis

Gabriel Santos, Isabel Praça, T. Pinto, S. Ramos, Z. Vale
{"title":"Scenarios generation for multi-agent simulation of electricity markets based on intelligent data analysis","authors":"Gabriel Santos, Isabel Praça, T. Pinto, S. Ramos, Z. Vale","doi":"10.1109/IA.2013.6595183","DOIUrl":null,"url":null,"abstract":"This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players' profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets' participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents' profiles and strategies resulting in a better representation of real market players' behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.","PeriodicalId":114295,"journal":{"name":"2013 IEEE Symposium on Intelligent Agents (IA)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Intelligent Agents (IA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IA.2013.6595183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players' profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets' participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents' profiles and strategies resulting in a better representation of real market players' behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
基于智能数据分析的电力市场多智能体仿真场景生成
本文介绍了一种工具,能够自动收集真实能源市场提供的数据,并通过使用人工智能技术、数据挖掘算法和机器学习方法支持的数据库中的知识发现过程,生成场景,捕获和改进市场参与者的概况和策略。它提供了产生具有不同维度和特征的情景的手段,确保真实和适应的市场及其参与实体的代表性。场景生成器模块增强了MASCEM(竞争电力市场多智能体模拟器)模拟器,为决策支持提供了更有效的工具。所提出的模块的实施成果使研究人员和电力市场的参与实体能够分析数据,创建真实场景并进行实验。另一方面,将知识发现技术应用于真实数据也允许改进MASCEM代理的配置文件和策略,从而更好地表示真实市场参与者的行为。这项工作旨在通过充分的多智能体模拟来提高对电力市场和相关实体之间相互作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信