{"title":"Control of band gap of spin waves in width-modulated nanostrip using voltage-controlled magnetic anisotropy: Spin wave filter","authors":"P. Bhattacharjee, S. Barman","doi":"10.1109/ICEEICT56924.2023.10157622","DOIUrl":null,"url":null,"abstract":"A spin-wave filter that can operate at gigahertz frequencies may be built using a nanostrip magnonic-crystal waveguide with spatially periodic width modulation. Here, micromagnetic simulations are used to demonstrate the unique planar structure of magnonic-crystal waveguide composed of a magnetic material. In this structure, the permitted and forbidden bands of propagating dipole-exchange spin waves may be adjusted by periodic modulation of varying widths in thin-film nanostrips. A periodic nanostrip with a variable width, in contrast to a normal nanostrip with a fixed width, results in the production of forbidden bands (band gaps) as a consequence of spin-wave reflection by the periodic potential spurred on by long-range dipolar interactions. In this work, it is shown that the band structures of a width-modulated magnonic-crystal waveguide can be effectively tuned by controlling the magnetic anisotropy with a voltage. This research may provide a path toward the practical implementation of gigahertz-frequency, broadband spin wave filters.","PeriodicalId":345324,"journal":{"name":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT56924.2023.10157622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A spin-wave filter that can operate at gigahertz frequencies may be built using a nanostrip magnonic-crystal waveguide with spatially periodic width modulation. Here, micromagnetic simulations are used to demonstrate the unique planar structure of magnonic-crystal waveguide composed of a magnetic material. In this structure, the permitted and forbidden bands of propagating dipole-exchange spin waves may be adjusted by periodic modulation of varying widths in thin-film nanostrips. A periodic nanostrip with a variable width, in contrast to a normal nanostrip with a fixed width, results in the production of forbidden bands (band gaps) as a consequence of spin-wave reflection by the periodic potential spurred on by long-range dipolar interactions. In this work, it is shown that the band structures of a width-modulated magnonic-crystal waveguide can be effectively tuned by controlling the magnetic anisotropy with a voltage. This research may provide a path toward the practical implementation of gigahertz-frequency, broadband spin wave filters.