Control of band gap of spin waves in width-modulated nanostrip using voltage-controlled magnetic anisotropy: Spin wave filter

P. Bhattacharjee, S. Barman
{"title":"Control of band gap of spin waves in width-modulated nanostrip using voltage-controlled magnetic anisotropy: Spin wave filter","authors":"P. Bhattacharjee, S. Barman","doi":"10.1109/ICEEICT56924.2023.10157622","DOIUrl":null,"url":null,"abstract":"A spin-wave filter that can operate at gigahertz frequencies may be built using a nanostrip magnonic-crystal waveguide with spatially periodic width modulation. Here, micromagnetic simulations are used to demonstrate the unique planar structure of magnonic-crystal waveguide composed of a magnetic material. In this structure, the permitted and forbidden bands of propagating dipole-exchange spin waves may be adjusted by periodic modulation of varying widths in thin-film nanostrips. A periodic nanostrip with a variable width, in contrast to a normal nanostrip with a fixed width, results in the production of forbidden bands (band gaps) as a consequence of spin-wave reflection by the periodic potential spurred on by long-range dipolar interactions. In this work, it is shown that the band structures of a width-modulated magnonic-crystal waveguide can be effectively tuned by controlling the magnetic anisotropy with a voltage. This research may provide a path toward the practical implementation of gigahertz-frequency, broadband spin wave filters.","PeriodicalId":345324,"journal":{"name":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT56924.2023.10157622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A spin-wave filter that can operate at gigahertz frequencies may be built using a nanostrip magnonic-crystal waveguide with spatially periodic width modulation. Here, micromagnetic simulations are used to demonstrate the unique planar structure of magnonic-crystal waveguide composed of a magnetic material. In this structure, the permitted and forbidden bands of propagating dipole-exchange spin waves may be adjusted by periodic modulation of varying widths in thin-film nanostrips. A periodic nanostrip with a variable width, in contrast to a normal nanostrip with a fixed width, results in the production of forbidden bands (band gaps) as a consequence of spin-wave reflection by the periodic potential spurred on by long-range dipolar interactions. In this work, it is shown that the band structures of a width-modulated magnonic-crystal waveguide can be effectively tuned by controlling the magnetic anisotropy with a voltage. This research may provide a path toward the practical implementation of gigahertz-frequency, broadband spin wave filters.
利用压控磁各向异性控制宽度调制纳米带中自旋波带隙:自旋波滤波器
利用空间周期宽度调制的纳米带状磁晶体波导,可以构建工作在千兆赫频率的自旋波滤波器。本文采用微磁模拟的方法,对磁性材料组成的磁晶体波导的独特平面结构进行了研究。在这种结构中,偶极交换自旋波的允许带和禁止带可以通过薄膜纳米带中不同宽度的周期性调制来调节。与固定宽度的普通纳米带相比,具有可变宽度的周期纳米带由于远程偶极相互作用激发的周期势的自旋波反射而产生禁带(带隙)。研究表明,通过电压控制磁各向异性,可以有效地调谐宽度调制磁晶体波导的能带结构。这项研究可能为实际实现千兆赫频率的宽带自旋波滤波器提供一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信