Lower bounds for polynomial calculus: non-binomial case

Michael Alekhnovich, A. Razborov
{"title":"Lower bounds for polynomial calculus: non-binomial case","authors":"Michael Alekhnovich, A. Razborov","doi":"10.1109/SFCS.2001.959893","DOIUrl":null,"url":null,"abstract":"We generalize recent linear lower bounds for Polynomial Calculus based on binomial ideals. We produce a general hardness criterion (that we call immunity) which is satisfied by a random function and prove linear lower bounds on the degree of PC refutations for a wide class of tautologies based on immune functions. As some applications of our techniques, we introduce mod/sub p/ Tseitin tautologies in the Boolean case (e.g. in the presence of axioms x/sub i//sup 2/=x/sub i/), prove that they are hard for PC over fields with characteristic different from p, and generalize them to Flow tautologies which are based on the MAJORITY function and are proved to be hard over any field. We also show the /spl Omega/(n) lower bound for random k-CNFs over fields of characteristic 2.","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 142

Abstract

We generalize recent linear lower bounds for Polynomial Calculus based on binomial ideals. We produce a general hardness criterion (that we call immunity) which is satisfied by a random function and prove linear lower bounds on the degree of PC refutations for a wide class of tautologies based on immune functions. As some applications of our techniques, we introduce mod/sub p/ Tseitin tautologies in the Boolean case (e.g. in the presence of axioms x/sub i//sup 2/=x/sub i/), prove that they are hard for PC over fields with characteristic different from p, and generalize them to Flow tautologies which are based on the MAJORITY function and are proved to be hard over any field. We also show the /spl Omega/(n) lower bound for random k-CNFs over fields of characteristic 2.
多项式微积分的下界:非二项情况
基于二项式理想,推广了多项式微积分的线性下界。我们提出了一个由随机函数满足的一般硬度判据(我们称之为免疫),并证明了基于免疫函数的广义重言式的PC驳斥度的线性下界。作为我们技术的一些应用,我们在布尔情况下引入了mod/sub p/ tseittin重言式(例如在存在公理x/sub i//sup 2/=x/sub i/的情况下),证明了它们在与p特征不同的域上PC是困难的,并将其推广到基于MAJORITY函数的Flow重言式,证明了它们在任何域上都是困难的。我们还展示了特征为2的域上随机k- cnf的/spl ω /(n)下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信