Increasing Boosting Effectiveness with Estimation of Distribution Algorithms

Henry E. L. Cagnini, M. Basgalupp, Rodrigo C. Barros
{"title":"Increasing Boosting Effectiveness with Estimation of Distribution Algorithms","authors":"Henry E. L. Cagnini, M. Basgalupp, Rodrigo C. Barros","doi":"10.1109/CEC.2018.8477959","DOIUrl":null,"url":null,"abstract":"Ensemble learning is the machine learning paradigm that aims at integrating several base learners into a single system under the assumption that the collective consensus outperforms a single strong learner, be it regarding effectiveness, efficiency, or any other problem-specific metric. Ensemble learning comprises three main phases: generation, selection, and integration, and there are several possible (deterministic or stochastic) strategies for executing one or more of those phases. In this paper, our focus is on improving the predictive accuracy of the well-known AdaBoost algorithm. By using its former voting weights as starting point in a global search carried by an Estimation of Distribution Algorithm, we are capable of improving AdaBoost up to $\\approx 11$ % regarding predictive accuracy in a thorough experimental analysis with multiple public datasets.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ensemble learning is the machine learning paradigm that aims at integrating several base learners into a single system under the assumption that the collective consensus outperforms a single strong learner, be it regarding effectiveness, efficiency, or any other problem-specific metric. Ensemble learning comprises three main phases: generation, selection, and integration, and there are several possible (deterministic or stochastic) strategies for executing one or more of those phases. In this paper, our focus is on improving the predictive accuracy of the well-known AdaBoost algorithm. By using its former voting weights as starting point in a global search carried by an Estimation of Distribution Algorithm, we are capable of improving AdaBoost up to $\approx 11$ % regarding predictive accuracy in a thorough experimental analysis with multiple public datasets.
利用分布估计算法提高Boosting的有效性
集成学习是一种机器学习范式,旨在将几个基本学习器集成到一个系统中,假设集体共识优于单个强大的学习器,无论是关于有效性、效率还是任何其他特定问题的指标。集成学习包括三个主要阶段:生成、选择和集成,并且有几种可能的(确定性的或随机的)策略来执行这些阶段中的一个或多个。在本文中,我们的重点是提高众所周知的AdaBoost算法的预测精度。通过使用其先前的投票权重作为由估计分布算法进行的全局搜索的起点,我们能够在多个公共数据集的全面实验分析中将AdaBoost的预测准确性提高到约11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信