Simulation of neural networks on a massively parallel computer (DAP-510) using sparse matrix techniques

S.N. Gupta, M. Zubair, C. Grosch
{"title":"Simulation of neural networks on a massively parallel computer (DAP-510) using sparse matrix techniques","authors":"S.N. Gupta, M. Zubair, C. Grosch","doi":"10.1109/FMPC.1990.89486","DOIUrl":null,"url":null,"abstract":"A parallel sparse matrix algorithm is proposed for the simulation of the modified Hopfield-Tank (MHT) network for solving the Traveling Salesman Problem (TSP). The MHT network using this sparse matrix algorithm has been implemented on a DAP-510, a massively parallel SIMD (single-instruction-steam, multiple-data-stream) computer consisting of 1024 processors. Problems of various sizes, ranging from eight cities up to 256 cities, have been simulated. The results show a very large speedup for the algorithm as compared with one using a standard dense matrix implementation.<<ETX>>","PeriodicalId":193332,"journal":{"name":"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMPC.1990.89486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A parallel sparse matrix algorithm is proposed for the simulation of the modified Hopfield-Tank (MHT) network for solving the Traveling Salesman Problem (TSP). The MHT network using this sparse matrix algorithm has been implemented on a DAP-510, a massively parallel SIMD (single-instruction-steam, multiple-data-stream) computer consisting of 1024 processors. Problems of various sizes, ranging from eight cities up to 256 cities, have been simulated. The results show a very large speedup for the algorithm as compared with one using a standard dense matrix implementation.<>
利用稀疏矩阵技术在大规模并行计算机(DAP-510)上模拟神经网络
针对改进Hopfield-Tank (MHT)网络求解旅行商问题(TSP),提出了一种并行稀疏矩阵算法。使用这种稀疏矩阵算法的MHT网络已经在DAP-510上实现,DAP-510是由1024个处理器组成的大规模并行SIMD(单指令蒸汽,多数据流)计算机。模拟了不同规模的问题,从8个城市到256个城市不等。结果表明,与使用标准密集矩阵实现的算法相比,该算法有非常大的加速
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信