I3GO+ at RICATIM 2017: A semi-supervised approach to determine the relevance between images and text-annotations

José Ortiz-Bejar, Eric Sadit Tellez, Mario Graff, Sabino Miranda-Jiménez, Jesus Ortiz-Bejar, Daniela Moctezuma, Claudia N. Sánchez
{"title":"I3GO+ at RICATIM 2017: A semi-supervised approach to determine the relevance between images and text-annotations","authors":"José Ortiz-Bejar, Eric Sadit Tellez, Mario Graff, Sabino Miranda-Jiménez, Jesus Ortiz-Bejar, Daniela Moctezuma, Claudia N. Sánchez","doi":"10.1109/ROPEC.2017.8261691","DOIUrl":null,"url":null,"abstract":"In this manuscript, we describe our solution for the RedICA Text-Image Matching (RICATIM) challenge. This challenge aims to tackle the image-text matching problem as one of binary classification, that is, given an image-text pair. Therefore, a valid solution must determine if the relation between the image and text is valid. The RICATIM dataset contains a large number of examples that were used to create an algorithm that effectively learns the underlying relations. Vision and language classifiers must deal with high dimensional data; therefore, traditional classification methods increase their learning time and also tend to perform poorly. To tackle the RICATIM challenge, we introduce a novelty approach that improves the classification based on k-nearest neighbor (KNN) classifier. Our proposal relies on the solution of the k centers problem using the Farthest First Traversal algorithm, along with a kernel function. We use those techniques to reduce the dimension effectively while improving the performance of the KNN classifiers. We provide an experimental comparison of our approach showing a significant improvement of state of the art.","PeriodicalId":260469,"journal":{"name":"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2017.8261691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this manuscript, we describe our solution for the RedICA Text-Image Matching (RICATIM) challenge. This challenge aims to tackle the image-text matching problem as one of binary classification, that is, given an image-text pair. Therefore, a valid solution must determine if the relation between the image and text is valid. The RICATIM dataset contains a large number of examples that were used to create an algorithm that effectively learns the underlying relations. Vision and language classifiers must deal with high dimensional data; therefore, traditional classification methods increase their learning time and also tend to perform poorly. To tackle the RICATIM challenge, we introduce a novelty approach that improves the classification based on k-nearest neighbor (KNN) classifier. Our proposal relies on the solution of the k centers problem using the Farthest First Traversal algorithm, along with a kernel function. We use those techniques to reduce the dimension effectively while improving the performance of the KNN classifiers. We provide an experimental comparison of our approach showing a significant improvement of state of the art.
I3GO+在RICATIM 2017:一种半监督的方法来确定图像和文本注释之间的相关性
在这篇文章中,我们描述了我们对RedICA文本图像匹配(RICATIM)挑战的解决方案。这个挑战的目的是解决图像-文本匹配问题作为一个二进制分类,即给定一个图像-文本对。因此,一个有效的解决方案必须确定图像和文本之间的关系是否有效。RICATIM数据集包含大量用于创建有效学习底层关系的算法的示例。视觉和语言分类器必须处理高维数据;因此,传统的分类方法增加了学习时间,也往往表现不佳。为了解决RICATIM的挑战,我们引入了一种新颖的方法来改进基于k-最近邻(KNN)分类器的分类。我们的建议依赖于使用最远第一次遍历算法以及核函数来解决k中心问题。我们使用这些技术有效地降低了维数,同时提高了KNN分类器的性能。我们提供了我们的方法的实验比较,显示了艺术状态的显着改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信