{"title":"Peltier cells cooling system for switch mode power supply","authors":"G. Casano, S. Piva","doi":"10.1109/THERMINIC.2016.7749066","DOIUrl":null,"url":null,"abstract":"The results are presented of an experimental investigation in a liquid cooled Switch-Mode Power Supply (SMPS). The target is a quantitative analysis of the performance of a cooling system designed to dissipate the heat generated by the active and passive electronic components of this SMPS, in order to limit its maximum operational temperature. The active components are cooled with a liquid cold-plate. The passive components are cooled with an air flow. The temperature of this airflow is controlled with Peltier cells coupled to the cold-late. Measurements are made of temperature and of electric efficiency of the SMPS. The cooling system is placed in an experimental tool where it is possible to measure and control the cooling liquid flow. A detailed analysis of the thermal behaviour of this cooling system is given. Finally, the practical significance of the problem is discussed.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC.2016.7749066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The results are presented of an experimental investigation in a liquid cooled Switch-Mode Power Supply (SMPS). The target is a quantitative analysis of the performance of a cooling system designed to dissipate the heat generated by the active and passive electronic components of this SMPS, in order to limit its maximum operational temperature. The active components are cooled with a liquid cold-plate. The passive components are cooled with an air flow. The temperature of this airflow is controlled with Peltier cells coupled to the cold-late. Measurements are made of temperature and of electric efficiency of the SMPS. The cooling system is placed in an experimental tool where it is possible to measure and control the cooling liquid flow. A detailed analysis of the thermal behaviour of this cooling system is given. Finally, the practical significance of the problem is discussed.