A 28nm, 4.69TOPS/W Training, 2.34µJ/lmage Inference, on-chip Training Accelerator with Inference-compatible Back Propagation

Haitao Ge, Weiwei Shan, Yicheng Lu, Jun Yang
{"title":"A 28nm, 4.69TOPS/W Training, 2.34µJ/lmage Inference, on-chip Training Accelerator with Inference-compatible Back Propagation","authors":"Haitao Ge, Weiwei Shan, Yicheng Lu, Jun Yang","doi":"10.1109/ICTA56932.2022.9963098","DOIUrl":null,"url":null,"abstract":"Previous on-chip training accelerators improved training efficiency but seldomly considered inference efficiency. We propose to convert back propagation to be compatible with inference, use interleaved memory allocation to reduce external memory access and zero-skipping loss propagation. Working at 40MHz, 0.48V core voltage, our 28nm one-core OCT chip has peak training efficiency of 4.69TOPS/W and the best inference energy of 2.34 µJ/inf/ image, 9.1× better than SoTA work.","PeriodicalId":325602,"journal":{"name":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA56932.2022.9963098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Previous on-chip training accelerators improved training efficiency but seldomly considered inference efficiency. We propose to convert back propagation to be compatible with inference, use interleaved memory allocation to reduce external memory access and zero-skipping loss propagation. Working at 40MHz, 0.48V core voltage, our 28nm one-core OCT chip has peak training efficiency of 4.69TOPS/W and the best inference energy of 2.34 µJ/inf/ image, 9.1× better than SoTA work.
28nm, 4.69TOPS/W训练,2.34µJ/图像推理,具有推理兼容的反向传播的片上训练加速器
以前的片上训练加速器提高了训练效率,但很少考虑推理效率。我们建议将反向传播转换为与推理兼容,使用交错内存分配来减少外部内存访问和零跳损传播。我们的28nm单核OCT芯片工作在40MHz, 0.48V核心电压下,峰值训练效率为4.69TOPS/W,最佳推理能量为2.34µJ/inf/ image,比SoTA工作效率高9.1倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信