Extractive Text Summarization Using Word Vector Embedding

Aditya Jain, Divij Bhatia, M. Thakur
{"title":"Extractive Text Summarization Using Word Vector Embedding","authors":"Aditya Jain, Divij Bhatia, M. Thakur","doi":"10.1109/MLDS.2017.12","DOIUrl":null,"url":null,"abstract":"These days, text summarization is an active research field to identify the relevant information from large documents produced in various domains such as finance, news media, academics, politics, etc. Text summarization is the process of shortening the documents by preserving the important contents of the text. This can be achieved through extractive and abstractive summarization. In this paper, we have proposed an approach to extract a good set of features followed by neural network for supervised extractive summarization. Our experimental results on Document Understanding Conferences 2002 dataset show the effectiveness of the proposed method against various online extractive text summarizers.","PeriodicalId":248656,"journal":{"name":"2017 International Conference on Machine Learning and Data Science (MLDS)","volume":"1556 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Machine Learning and Data Science (MLDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLDS.2017.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

These days, text summarization is an active research field to identify the relevant information from large documents produced in various domains such as finance, news media, academics, politics, etc. Text summarization is the process of shortening the documents by preserving the important contents of the text. This can be achieved through extractive and abstractive summarization. In this paper, we have proposed an approach to extract a good set of features followed by neural network for supervised extractive summarization. Our experimental results on Document Understanding Conferences 2002 dataset show the effectiveness of the proposed method against various online extractive text summarizers.
使用词向量嵌入提取文本摘要
目前,文本摘要是一个活跃的研究领域,从金融、新闻媒体、学术、政治等各个领域产生的大型文件中识别相关信息。文本摘要是通过保留文本的重要内容来缩短文档的过程。这可以通过抽取和抽象的总结来实现。在本文中,我们提出了一种方法来提取一组好的特征,然后使用神经网络进行监督提取摘要。我们在2002年文档理解会议数据集上的实验结果表明,所提出的方法对各种在线提取文本摘要器是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信