On the Automatic Prediction of PM10 with in-situ measurements, satellite AOT retrievals and ancillary data

P. Campalani, Thi Nhat Thanh Nguyen, S. Mantovani, G. Mazzini
{"title":"On the Automatic Prediction of PM10 with in-situ measurements, satellite AOT retrievals and ancillary data","authors":"P. Campalani, Thi Nhat Thanh Nguyen, S. Mantovani, G. Mazzini","doi":"10.1109/ISSPIT.2011.6151541","DOIUrl":null,"url":null,"abstract":"Daily monitoring of unhealthy particles suspended in the low troposphere is of major concern around the world, and ground-based measuring stations represent a reliable but still inadequate means for a full spatial coverage assessment. Advances in satellite sensors have provided new datasets and though less precise than insitu observations, they can be combined altogether to enhance the prediction of particulate matter. In this article we evaluate a methodology for automatic multi-variate estimation of PM10 dry mass concentrations along with a comparison of three different cokriging estimators, which integrate ground measurements of PM10, satellite MODIS-derived retrievals of aerosols optical thickness and further auxiliary data. Results highlight the need for further improvements and studies. The analysis employs the available data in 2007 over the Emilia Romagna region (Padana Plain, Northern Italy), where stagnant meteorological conditions further urge for a comprehensive air quality monitoring. Qualitative PM10 full maps of Emilia Romagna are then automatically yielded on-line in a dynamic GIS environment for multi-temporal analysis on air quality.","PeriodicalId":288042,"journal":{"name":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2011.6151541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Daily monitoring of unhealthy particles suspended in the low troposphere is of major concern around the world, and ground-based measuring stations represent a reliable but still inadequate means for a full spatial coverage assessment. Advances in satellite sensors have provided new datasets and though less precise than insitu observations, they can be combined altogether to enhance the prediction of particulate matter. In this article we evaluate a methodology for automatic multi-variate estimation of PM10 dry mass concentrations along with a comparison of three different cokriging estimators, which integrate ground measurements of PM10, satellite MODIS-derived retrievals of aerosols optical thickness and further auxiliary data. Results highlight the need for further improvements and studies. The analysis employs the available data in 2007 over the Emilia Romagna region (Padana Plain, Northern Italy), where stagnant meteorological conditions further urge for a comprehensive air quality monitoring. Qualitative PM10 full maps of Emilia Romagna are then automatically yielded on-line in a dynamic GIS environment for multi-temporal analysis on air quality.
基于现场测量、卫星AOT反演和辅助数据的PM10自动预报研究
对流层低层悬浮的不健康颗粒的日常监测是全世界关注的主要问题,地面测量站是一种可靠但仍不充分的全面空间覆盖评估手段。卫星传感器的进步提供了新的数据集,虽然不如现场观测精确,但它们可以综合起来加强对颗粒物的预测。在本文中,我们评估了一种PM10干质量浓度的多变量自动估计方法,并比较了三种不同的cokriging估计方法,这些方法综合了PM10的地面测量、卫星modis衍生的气溶胶光学厚度检索和进一步的辅助数据。结果强调了进一步改进和研究的必要性。该分析采用了2007年艾米利亚罗马涅地区(意大利北部帕达纳平原)的现有数据,该地区停滞的气象条件进一步敦促进行全面的空气质量监测。然后在动态GIS环境中在线自动生成艾米利亚罗马涅的定性PM10全图,用于对空气质量进行多时间分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信