Distributed Neural Network with TensorFlow on Human Activity Recognition Over Multicore TPU

H. Kimm, Incheon Paik
{"title":"Distributed Neural Network with TensorFlow on Human Activity Recognition Over Multicore TPU","authors":"H. Kimm, Incheon Paik","doi":"10.1109/MCSoC51149.2021.00026","DOIUrl":null,"url":null,"abstract":"There have been increasing interests and success of applying deep learning neural networks to their big data platforms and workflows, say Distributed Deep Learning. In this paper, we present distributed long short-term memory (dLSTM) neural network model using TensorFlow over multicore Tensor Processing Unit (TPU) on Google Cloud. LSTM is a variant of the recurrent neural network (RNN), which is more suitable for processing temporal sequences. This model could extract human activity features automatically and classify them with a few model parameters. In the proposed model, the raw data collected by mobile sensors was fed into distributed multi-layer LSTM layers. Human activity recognition data from UCI machine-learning library have been applied to the proposed distributed LSTM (dLSTM) model to compare the efficiency of TensorFlow over CPU and TPU based on execution time, and evaluation metrics: accuracy, precision, recall and F1 score along with the use of Google Colab Notebook.","PeriodicalId":166811,"journal":{"name":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC51149.2021.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There have been increasing interests and success of applying deep learning neural networks to their big data platforms and workflows, say Distributed Deep Learning. In this paper, we present distributed long short-term memory (dLSTM) neural network model using TensorFlow over multicore Tensor Processing Unit (TPU) on Google Cloud. LSTM is a variant of the recurrent neural network (RNN), which is more suitable for processing temporal sequences. This model could extract human activity features automatically and classify them with a few model parameters. In the proposed model, the raw data collected by mobile sensors was fed into distributed multi-layer LSTM layers. Human activity recognition data from UCI machine-learning library have been applied to the proposed distributed LSTM (dLSTM) model to compare the efficiency of TensorFlow over CPU and TPU based on execution time, and evaluation metrics: accuracy, precision, recall and F1 score along with the use of Google Colab Notebook.
基于TensorFlow的分布式神经网络在多核TPU上的人体活动识别
分布式深度学习表示,将深度学习神经网络应用于大数据平台和工作流程的兴趣和成功越来越多。在本文中,我们提出了基于TensorFlow的分布式长短期记忆(dLSTM)神经网络模型,该模型基于Google Cloud上的多核张量处理单元(TPU)。LSTM是递归神经网络(RNN)的一种变体,它更适合处理时间序列。该模型可以自动提取人体活动特征,并利用少量模型参数对其进行分类。在该模型中,移动传感器采集的原始数据被馈送到分布式多层LSTM层中。将来自UCI机器学习库的人类活动识别数据应用于所提出的分布式LSTM (dLSTM)模型,比较TensorFlow在CPU和TPU上基于执行时间的效率,以及使用Google Colab Notebook的评估指标:准确性、精密度、召回率和F1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信