{"title":"IITD at WANLP 2022 Shared Task: Multilingual Multi-Granularity Network for Propaganda Detection","authors":"Shubham Mittal, Preslav Nakov","doi":"10.48550/arXiv.2210.17190","DOIUrl":null,"url":null,"abstract":"We present our system for the two subtasks of the shared task on propaganda detection in Arabic, part of WANLP’2022. Subtask 1 is a multi-label classification problem to find the propaganda techniques used in a given tweet. Our system for this task uses XLM-R to predict probabilities for the target tweet to use each of the techniques. In addition to finding the techniques, subtask 2 further asks to identify the textual span for each instance of each technique that is present in the tweet; the task can be modelled as a sequence tagging problem. We use a multi-granularity network with mBERT encoder for subtask 2. Overall, our system ranks second for both subtasks (out of 14 and 3 participants, respectively). Our experimental results and analysis show that it does not help to use a much larger English corpus annotated with propaganda techniques, regardless of whether used in English or after translation to Arabic.","PeriodicalId":355149,"journal":{"name":"Workshop on Arabic Natural Language Processing","volume":"310 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Arabic Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.17190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We present our system for the two subtasks of the shared task on propaganda detection in Arabic, part of WANLP’2022. Subtask 1 is a multi-label classification problem to find the propaganda techniques used in a given tweet. Our system for this task uses XLM-R to predict probabilities for the target tweet to use each of the techniques. In addition to finding the techniques, subtask 2 further asks to identify the textual span for each instance of each technique that is present in the tweet; the task can be modelled as a sequence tagging problem. We use a multi-granularity network with mBERT encoder for subtask 2. Overall, our system ranks second for both subtasks (out of 14 and 3 participants, respectively). Our experimental results and analysis show that it does not help to use a much larger English corpus annotated with propaganda techniques, regardless of whether used in English or after translation to Arabic.